Bacterial Inactivation and Biofilm Disruption through Indigenous Prophage Activation Using Low-Intensity Cold Atmospheric Plasma

原噬菌体 生物膜 大肠杆菌 微生物学 溶解 化学 细菌 细胞内 活性氧 溶原循环 生物 噬菌体 生物化学 基因 遗传学
作者
Xia Gu,Dan Huang,Juhong Chen,Xiang Li,Yongquan Zhou,Manhong Huang,Yanan Liu,Pingfeng Yu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:56 (12): 8920-8931 被引量:11
标识
DOI:10.1021/acs.est.2c01516
摘要

Biofilms can be pervasive and problematic in water treatment and distribution systems but are difficult to eradicate due to hindered penetration of antimicrobial chemicals. Here, we demonstrate that indigenous prophages activated by low-intensity plasma have the potential for efficient bacterial inactivation and biofilm disruption. Specifically, low-intensity plasma treatment (i.e., 35.20 W) elevated the intracellular oxidative reactive species (ROS) levels by 184%, resulting in the activation of prophage lambda (λ) within antibiotic-resistant Escherichia coli K-12 (lambda+) [E. coli (λ+)]. The phage activation efficiency was 6.50-fold higher than the conventional mitomycin C induction. Following a cascading effect, the activated phages were released upon the lysis of E. coli (λ+), which propagated further and lysed phage-susceptible E. coli K-12 (lambda-) [E. coli (λ-)] within the biofilm. Bacterial intracellular ROS analysis and ROS scavenger tests revealed the importance of plasma-generated ROS (e.g., •OH, 1O2, and •O2-) and associated intracellular oxidative stress on prophage activation. In a mixed-species biofilm on a permeable membrane surface, our "inside-out" strategy could inactivate total bacteria by 49% and increase the membrane flux by 4.33-fold. Furthermore, the metagenomic analysis revealed that the decrease in bacterial abundance was closely associated with the increase in phage levels. As a proof-of-concept, this is the first demonstration of indigenous prophage activations by low-intensity plasma for antibiotic-resistant bacterial inactivation and biofilm eradication, which opens up a new avenue for managing associated microbial problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研蚂蚁完成签到,获得积分10
2秒前
允长安发布了新的文献求助10
3秒前
XMFM完成签到 ,获得积分10
3秒前
悠悠夏日长完成签到 ,获得积分10
4秒前
9秒前
领导范儿应助Cindy采纳,获得10
10秒前
利奈唑胺完成签到,获得积分10
10秒前
10秒前
丘比特应助binges on choco采纳,获得10
11秒前
斯文败类应助wuli采纳,获得10
11秒前
12秒前
12秒前
情怀应助感动飞丹采纳,获得10
15秒前
禅依完成签到,获得积分10
16秒前
诚心源智完成签到,获得积分10
16秒前
科目三应助xixi626采纳,获得10
18秒前
含糊的晓凡完成签到 ,获得积分10
19秒前
Dream完成签到 ,获得积分10
22秒前
23秒前
科研通AI2S应助zjq采纳,获得10
23秒前
bkagyin应助MLC采纳,获得10
24秒前
文章库库发完成签到,获得积分10
24秒前
25秒前
25秒前
25秒前
26秒前
豆豆完成签到 ,获得积分10
26秒前
26秒前
完美世界应助生嚼椎间盘采纳,获得10
27秒前
上官若男应助Jonas采纳,获得10
28秒前
所所应助大约在冬季采纳,获得10
29秒前
可爱的函函应助cc139bm采纳,获得10
30秒前
wuli发布了新的文献求助10
30秒前
xingxing发布了新的文献求助20
30秒前
31秒前
31秒前
圆圆发布了新的文献求助10
31秒前
惠炳发布了新的文献求助30
32秒前
32秒前
高分求助中
Heun’s Differential Equations 600
《Fundamentals of Power Supply Design》Robert A. Mammano 510
晋察冀边区民主政权建设文献选编(上中下册) 500
High Wire: How China Regulates Big Tech and Governs Its Economy 260
lingnan science journal vol. 16 250
The philosophy of sports medicine care: an historical review 250
A posteriori勾配制限手法「ポストリミタ」と界面捕獲法THINCを組み合わせた連続・不連続流れを高解像するMUSCLタイプの解法 210
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2250302
求助须知:如何正确求助?哪些是违规求助? 1899152
关于积分的说明 4738765
捐赠科研通 1689032
什么是DOI,文献DOI怎么找? 856516
版权声明 545395
科研通“疑难数据库(出版商)”最低求助积分说明 453408