Tuning the Coordination Environment in Single-Atom Catalysts to Achieve Highly Efficient Oxygen Reduction Reactions

化学 催化作用 金属 密度泛函理论 氧还原反应 电化学 甲醇 氧原子 结晶学 Atom(片上系统) 物理化学 分子 计算化学 电极 有机化学 嵌入式系统 计算机科学
作者
Jinqiang Zhang,Yufei Zhao,Chen Chen,Yu‐Cheng Huang,Chung‐Li Dong,Chih‐Jung Chen,Ru‐Shi Liu,Chengyin Wang,Kang Yan,Yadong Li,Guoxiu Wang
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:141 (51): 20118-20126 被引量:685
标识
DOI:10.1021/jacs.9b09352
摘要

Designing atomically dispersed metal catalysts for oxygen reduction reaction (ORR) is a promising approach to achieve efficient energy conversion. Herein, we develop a template-assisted method to synthesize a series of single metal atoms anchored on porous N,S-codoped carbon (NSC) matrix as highly efficient ORR catalysts to investigate the correlation between the structure and their catalytic performance. The structure analysis indicates that an identical synthesis method results in distinguished structural differences between Fe-centered single-atom catalyst (Fe-SAs/NSC) and Co-centered/Ni-centered single-atom catalysts (Co-SAs/NSC and Ni-SAs/NSC) because of the different trends of each metal ion in forming a complex with the N,S-containing precursor during the initial synthesis process. The Fe-SAs/NSC mainly consists of a well-dispersed FeN4S2 center site where S atoms form bonds with the N atoms. The S atoms in Co-SAs/NSC and Ni-SAs/NSC, on the other hand, form metal–S bonds, resulting in CoN3S1 and NiN3S1 center sites. Density functional theory (DFT) reveals that the FeN4S2 center site is more active than the CoN3S1 and NiN3S1 sites, due to the higher charge density, lower energy barriers of the intermediates, and products involved. The experimental results indicate that all three single-atom catalysts could contribute high ORR electrochemical performances, while Fe-SAs/NSC exhibits the highest of all, which is even better than commercial Pt/C. Furthermore, Fe-SAs/NSC also displays high methanol tolerance as compared to commercial Pt/C and high stability up to 5000 cycles. This work provides insights into the rational design of the definitive structure of single-atom catalysts with tunable electrocatalytic activities for efficient energy conversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中和皇极举报灵巧千易求助涉嫌违规
1秒前
ZZzz完成签到,获得积分10
2秒前
xslw完成签到 ,获得积分10
2秒前
ZoeyD完成签到 ,获得积分10
2秒前
自觉浅完成签到,获得积分10
2秒前
WANGs发布了新的文献求助10
3秒前
石绿海完成签到,获得积分10
3秒前
YKH完成签到,获得积分10
3秒前
ever17完成签到,获得积分10
3秒前
老实的大象完成签到 ,获得积分10
5秒前
Master完成签到 ,获得积分10
6秒前
大模型应助南兰杉采纳,获得10
6秒前
7秒前
充电宝应助天气不错采纳,获得10
7秒前
打打应助阿大撒2采纳,获得10
9秒前
烟花应助自觉的夏之采纳,获得10
9秒前
ddr完成签到,获得积分10
9秒前
执笔完成签到,获得积分10
9秒前
9秒前
上官若男应助guanq采纳,获得10
10秒前
mc完成签到,获得积分20
10秒前
香蕉觅云应助WANGs采纳,获得10
11秒前
小朱完成签到,获得积分10
11秒前
smartsamen完成签到,获得积分10
11秒前
山丘完成签到,获得积分10
12秒前
12秒前
Melina完成签到 ,获得积分10
13秒前
一颗橙子完成签到,获得积分10
13秒前
13秒前
来日方长应助crazybatmanx采纳,获得10
14秒前
14秒前
包容烧鹅完成签到,获得积分10
14秒前
LXX-k完成签到,获得积分10
14秒前
14秒前
cindy完成签到,获得积分10
14秒前
华仔应助扶光采纳,获得10
14秒前
15秒前
向路路完成签到,获得积分10
15秒前
电闪完成签到,获得积分10
16秒前
小蘑菇应助丰丰采纳,获得10
16秒前
高分求助中
结直肠肿瘤学 1000
Essentials of thematic analysis 800
Iwasawa Theory and Its Perspective, Volume 2 520
ANDA Litigation: Strategies and Tactics for Pharmaceutical Patent Litigators Second 版本 500
Exact Solutions of the Discrete Heat Conduction Equations 500
A labyrinthodont from the Lower Gondwana of Kashmir and a new edestid from the Permian of the Salt Range 500
Patents for Chemicals, Pharmaceuticals and Biotechnology 6th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2324544
求助须知:如何正确求助?哪些是违规求助? 2002492
关于积分的说明 5022493
捐赠科研通 1762506
什么是DOI,文献DOI怎么找? 883624
版权声明 554626
科研通“疑难数据库(出版商)”最低求助积分说明 470225