Hi-GCN: A hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction

计算机科学 图形 神经影像学 嵌入 人工智能 功率图分析 机器学习 图嵌入 理论计算机科学 神经科学 心理学
作者
Hao Jiang,Peng Cao,XU Ming-yi,Jinzhu Yang,Osmar R. Zäıane
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:127: 104096-104096 被引量:167
标识
DOI:10.1016/j.compbiomed.2020.104096
摘要

Recently, brain connectivity networks have been used for the classification of neurological disorder, such as Autism Spectrum Disorders (ASD) or Alzheimer's disease (AD). Network analysis provides a new way for exploring the association between brain functional deficits and the underlying structural disruption related to brain disorders. Network embedding learning that aims to automatically learn low-dimensional representations for brain networks has drawn increasing attention in recent years. In this work we build upon graph neural network in order to learn useful representations for graph classification in an end-to-end fashion. Specifically, we propose a hierarchical GCN framework (called hi-GCN) to learn the graph feature embedding while considering the network topology information and subject's association at the same time. To demonstrate the effectiveness of our approach, we evaluate the performance of the proposed method on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and Autism Brain Imaging Data Exchange (ABIDE) dataset. Extensive experiments on ABIDE and ADNI datasets have demonstrated competitive performance of the hi-GCN model. Specifically, we obtain an average accuracy of 73.1%/78.5% as well as AUC of 82.3%/86.5% on ABIDE/ADNI. The comprehensive experiments demonstrate that our hi-GCN is effective for graph classification with brain disorders diagnosis. The proposed hi-GCN method performs the graph embedding learning from a hierarchical perspective while considering the structure in individual brain network and the subject's correlation in the global population network, which can capture the most essential embedding features to improve the classification performance of disease diagnosis. Moreover, the proposed jointly optimizing strategy also achieves faster training and easier convergence than both the hi-GCN with pre-training and two-step supervision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
达彦腾发布了新的文献求助10
1秒前
田様应助ronchan7采纳,获得10
1秒前
1秒前
搬砖ing发布了新的文献求助30
1秒前
朴实钥匙完成签到,获得积分10
1秒前
djjsj关注了科研通微信公众号
2秒前
11发布了新的文献求助10
2秒前
冰电镜完成签到 ,获得积分10
2秒前
ni发布了新的文献求助10
3秒前
Stacey发布了新的文献求助10
4秒前
4秒前
farh完成签到 ,获得积分10
4秒前
行xxx完成签到,获得积分10
5秒前
赘婿应助xiaomaxia采纳,获得10
5秒前
浮游应助dcc采纳,获得10
5秒前
5秒前
yuuu发布了新的文献求助10
5秒前
Shawn完成签到 ,获得积分10
5秒前
6秒前
RDQ完成签到,获得积分10
6秒前
6秒前
6秒前
达彦腾完成签到,获得积分10
6秒前
欢呼怜烟完成签到,获得积分20
6秒前
我是老大应助娃哈哈采纳,获得10
6秒前
6秒前
思维隋发布了新的文献求助10
6秒前
PhD_Ren完成签到,获得积分10
7秒前
deshin发布了新的文献求助10
8秒前
尊敬寒松完成签到 ,获得积分10
9秒前
浮游应助小鲨鱼采纳,获得10
9秒前
欢呼怜烟发布了新的文献求助10
10秒前
LLL发布了新的文献求助10
10秒前
dennisysz发布了新的文献求助10
11秒前
搜集达人应助感性的俊驰采纳,获得10
11秒前
idrees发布了新的文献求助10
12秒前
12秒前
来日方长发布了新的文献求助10
12秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5183473
求助须知:如何正确求助?哪些是违规求助? 4369781
关于积分的说明 13607386
捐赠科研通 4221555
什么是DOI,文献DOI怎么找? 2315256
邀请新用户注册赠送积分活动 1313969
关于科研通互助平台的介绍 1262801