环境修复
蓝藻
土壤盐分
环境科学
土壤肥力
土壤水分
鱼腥藻
环境化学
农学
生态学
生物
化学
细菌
土壤科学
污染
遗传学
作者
Han Li,Quanyu Zhao,He Huang
标识
DOI:10.1016/j.scitotenv.2019.03.104
摘要
Natural and human activities lead to soil degradation and soil salinization. The decrease of farmlands threatens food security. There are approximately 1 billion ha salt-affected soils all over of world, which can be made available resources after chemical, physical and biological remediation. Nostoc, Anabaena and other cyanobacterial species have outstanding capabilities, such as the ability to fix nitrogen from the air, produce an extracellular matrix and produce compatible solutes. The remediation of salt-affected soil is a complex and difficult task. During the past years, much new research has been conducted that shows that cyanobacteria are effective for salt-affected soil remediation in laboratory studies and field trials. The related mechanisms for both salt tolerance and salt-affected soil remediation were also evaluated from the perspective of biochemistry, molecular biology and systems biology. The effect of cyanobacteria on salt-affected soil is related to nitrogen fixation and other mechanisms. There are complicated interactions among cyanobacteria, bacteria, fungi and the soil. The interaction between cyanobacteria and salt-tolerant plants should be considered if the cyanobacterium is utilized to improve the soil fertility in addition to performing soil remediation. It is critical to re-establish the micro-ecology in salt-affected soils and improve the salt affected soil remediation efficiency. The first challenge is the selection of suitable cyanobacterial strain. The co-culture of cyanobacteria and bacteria is also potential approach. The cultivation of cyanobacteria on a large scale should be optimized to improve productivity and decrease cost. The development of bio-remediating agents for salt-affected soil remediation also relies on other technical problems, such as harvesting and contamination control. The application of cyanobacteria in salt-affected soil remediation will reconstruct green agriculture and promote the sustainable development of human society.
科研通智能强力驱动
Strongly Powered by AbleSci AI