Evaluation of acute hematological toxicity by machine learning in gynecologic cancers using postoperative radiotherapy

医学 逻辑回归 急性毒性 放射治疗 朴素贝叶斯分类器 机器学习 支持向量机 毒性 内科学 肿瘤科 计算机科学
作者
Melek Akçay,Durmuş Etiz,Özer Çelik,Alaattin Özen
出处
期刊:Indian Journal of Cancer [Medknow]
卷期号:59 (2): 178-186 被引量:1
标识
DOI:10.4103/ijc.ijc_666_19
摘要

The aim of the study is to investigate the factors affecting acute hematologic toxicity (HT) in the adjuvant radiotherapy (RT) of gynecologic cancers by machine learning.Between January 2015 and September 2018, 121 patients with endometrium and cervical cancer who underwent adjuvant RT with volumetric-modulated arc therapy (VMAT) were evaluated. The relationship between patient and treatment characteristics and acute HT was investigated using machine learning techniques, namely Logistic Regression, XGBoost, Artificial Neural Network, Random Forest, Naive Bayes, Support Vector Machine (SVM), and Gaussian Naive Bayes (GaussianNB) algorithms.No HT was observed in 11 cases (9.1%) and at least one grade of HT was observed in 110 cases. There were 55 (45.5%) cases with ≤grade 2 HT (mild HT) and 66 (54.5%) cases with grade ≥3 HT (severe HT). None of the patients developed grade 5 HT. Of 24 variables that could affect acute HT, nine were determined as important variables. According to the results, the best machine learning technique for acute HT estimation was SVM (accuracy 70%, area under curve (AUC): 0.65, sensitivity 71.4%, specificity 66.6%). Parameters affecting hematologic toxicity were evaluated also by classical statistical methods and there was a statistically significant relationship between age, RT, and bone marrow (BM) maximum dose.It is important to predict the patients who will develop acute HT in order to minimize the side effects of treatment. If these cases can be identified in advance, toxicity rates can be reduced by taking necessary precautions. These cases can be predicted with machine learning algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助悠悠筱柒采纳,获得10
1秒前
2秒前
3秒前
Hoho啊发布了新的文献求助50
3秒前
3秒前
Gaye发布了新的文献求助10
5秒前
坦率尔蝶完成签到 ,获得积分10
5秒前
6秒前
阿六发布了新的文献求助10
6秒前
鸢也完成签到,获得积分10
7秒前
BDMAXPK发布了新的文献求助10
7秒前
田様应助犹豫酸奶采纳,获得10
7秒前
8秒前
夏林完成签到,获得积分10
9秒前
Gaye完成签到,获得积分20
9秒前
Jasper应助余味采纳,获得30
9秒前
9秒前
YLing发布了新的文献求助10
10秒前
传奇3应助兔先生采纳,获得10
11秒前
绮山完成签到,获得积分10
11秒前
Ava应助asir_xw采纳,获得10
11秒前
11秒前
11秒前
BDMAXPK完成签到,获得积分10
12秒前
英俊溪灵完成签到,获得积分10
13秒前
13秒前
14秒前
一木发布了新的文献求助10
14秒前
小蘑菇应助yyds2222采纳,获得10
15秒前
yolo完成签到,获得积分10
16秒前
Jun完成签到 ,获得积分10
17秒前
powfu发布了新的文献求助10
17秒前
FIB菜狗完成签到,获得积分10
17秒前
roclie完成签到,获得积分10
18秒前
YLing完成签到,获得积分10
18秒前
日月星完成签到,获得积分10
19秒前
19秒前
19秒前
19秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4046697
求助须知:如何正确求助?哪些是违规求助? 3584498
关于积分的说明 11392349
捐赠科研通 3312037
什么是DOI,文献DOI怎么找? 1822386
邀请新用户注册赠送积分活动 894444
科研通“疑难数据库(出版商)”最低求助积分说明 816271