Efficient Optimization of Echo State Networks for Time Series Datasets

超参数 超参数优化 计算机科学 系列(地层学) 启发式 背景(考古学) 人工智能 时间序列 机器学习 贝叶斯优化 集合(抽象数据类型) Echo(通信协议) 算法 数据挖掘 支持向量机 计算机网络 生物 操作系统 古生物学 程序设计语言
作者
Jacob Reinier Maat,Nikolaos Gianniotis,Pavlos Protopapas
标识
DOI:10.1109/ijcnn.2018.8489094
摘要

Echo State Networks (ESNs) are recurrent neural networks that only train their output layer, thereby precluding the need to backpropagate gradients through time, which leads to significant computational gains. Nevertheless, a common issue in ESNs is determining its hyperparameters, which are crucial in instantiating a well performing reservoir, but are often set manually or using heuristics. In this work we optimize the ESN hyperparameters using Bayesian optimization which, given a limited budget of function evaluations, outperforms a grid search strategy. In the context of large volumes of time series data, such as light curves in the field of astronomy, we can further reduce the optimization cost of ESNs. In particular, we wish to avoid tuning hyperparameters per individual time series as this is costly; instead, we want to find ESNs with hyperparameters that perform well not just on individual time series but rather on groups of similar time series without sacrificing predictive performance significantly. This naturally leads to a notion of clusters, where each cluster is represented by an ESN tuned to model a group of time series of similar temporal behavior. We demonstrate this approach both on synthetic datasets and real world light curves from the MACHO survey. We show that our approach results in a significant reduction in the number of ESN models required to model a whole dataset, while retaining predictive performance for the series in each cluster.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专一的幻莲完成签到,获得积分10
1秒前
机灵的爆米花完成签到 ,获得积分10
1秒前
323完成签到,获得积分10
1秒前
万能图书馆应助舒心绝义采纳,获得10
2秒前
南极冰完成签到 ,获得积分10
2秒前
科研发布了新的文献求助10
2秒前
SYLH应助老衲采纳,获得10
3秒前
三个哈卡完成签到,获得积分10
3秒前
123123发布了新的文献求助10
4秒前
4秒前
悅悅完成签到,获得积分20
4秒前
科研通AI5应助羽羽采纳,获得10
4秒前
4秒前
xuan完成签到,获得积分10
6秒前
6秒前
Jun完成签到,获得积分10
6秒前
科研牛马完成签到,获得积分10
6秒前
大模型应助代代代代采纳,获得10
6秒前
xiawanren00完成签到,获得积分10
7秒前
7秒前
FashionBoy应助eee采纳,获得10
7秒前
搜集达人应助sxy采纳,获得10
7秒前
8秒前
王哈哈完成签到,获得积分10
8秒前
8秒前
9秒前
yyx完成签到,获得积分10
9秒前
han完成签到,获得积分10
10秒前
stormhero发布了新的文献求助10
10秒前
悬铃木完成签到,获得积分10
10秒前
111发布了新的文献求助10
11秒前
务实幻露完成签到 ,获得积分10
11秒前
11秒前
香蕉觅云应助我爱vasp采纳,获得10
11秒前
12秒前
是一个小朋友完成签到,获得积分10
12秒前
驭剑士完成签到,获得积分10
13秒前
乐乐驳回了Lucas应助
13秒前
kewu发布了新的文献求助10
13秒前
Orange应助粥粥采纳,获得10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812110
求助须知:如何正确求助?哪些是违规求助? 3356551
关于积分的说明 10382609
捐赠科研通 3073683
什么是DOI,文献DOI怎么找? 1688394
邀请新用户注册赠送积分活动 812128
科研通“疑难数据库(出版商)”最低求助积分说明 766960