有效扩散系数
白质
磁共振成像
脑瘤
核医学
胶质瘤
相关性
人脑
医学
胶质母细胞瘤
灰质
病理
核磁共振
放射科
癌症研究
物理
精神科
数学
几何学
作者
Thomas C. Kwee,Craig J. Galbán,Christina Tsien,Larry Junck,Pia C. Sundgren,Marko K. Ivancevic,Timothy D. Johnson,Charles R. Meyer,Alnawaz Rehemtulla,Brian D. Ross,Thomas L. Chenevert
摘要
Abstract This study aimed to determine the potential value of intravoxel water diffusion heterogeneity imaging for brain tumor characterization and evaluation of high‐grade gliomas, by comparing an established heterogeneity index ( α value) measured in human high‐grade gliomas to those of normal appearing white and grey matter landmarks. Twenty patients with high‐grade gliomas prospectively underwent diffusion‐weighted magnetic resonance imaging using multiple b‐values. The stretched‐exponential model was used to generate α and distributed diffusion coefficient (DDC) maps. The α values and DDCs of the tumor and contralateral anatomic landmarks were measured in each patient. Differences between α values of tumors and landmark tissues were assessed using paired t‐ tests. Correlation between tumor α and tumor DDC was assessed using Pearson's correlation coefficient. Mean α of tumors was significantly lower than that of contralateral frontal white matter ( p = 0.0249), basal ganglia ( p < 0.0001), cortical grey matter ( p < 0.0001), and centrum semiovale ( p = 0.0497). Correlation between tumor α and tumor DDC was strongly negative (Pearson correlation coefficient, −0.8493; p < 0.0001). The heterogeneity index α of human high‐grade gliomas is significantly different from those of normal brain structures, which potentially offers a new method for evaluating brain tumors. The observed negative correlation between tumor α and tumor DDC requires further investigation. Copyright © 2009 John Wiley & Sons, Ltd.
科研通智能强力驱动
Strongly Powered by AbleSci AI