AllSpark: A Multimodal Spatiotemporal General Intelligence Model With Ten Modalities via Language as a Reference Framework

计算机科学 模式 参考模型 人工智能 数据建模 模态(人机交互) 自然语言处理 数据库 社会科学 软件工程 社会学
作者
Run Shao,Cheng Yang,Qiujun Li,Lei Xu,Xiang Yang,Xian Li,M. H. Li,Qing Zhu,Yongjun Zhang,Yansheng Li,Yu Liu,Yong Tang,Dapeng Liu,Shizhong Yang,Haifeng Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:63: 1-20 被引量:12
标识
DOI:10.1109/tgrs.2025.3526725
摘要

RGB, multispectral, point and other spatio-temporal modal data fundamentally represent different observational approaches for the same geographic object. Therefore, leveraging multimodal data is an inherent requirement for comprehending geographic objects. However, due to the high heterogeneity in structure and semantics among various spatio-temporal modalities, the joint interpretation of multimodal spatio-temporal data has long been an extremely challenging problem. The primary challenge resides in striking a trade-off between the cohesion and autonomy of diverse modalities. This trade-off becomes progressively nonlinear as the number of modalities expands. Inspired by the human cognitive system and linguistic philosophy, where perceptual signals from the five senses converge into language, we introduce the Language as Reference Framework (LaRF), a fundamental principle for constructing a multimodal unified model. Building upon this, we propose AllSpark, a multimodal spatio-temporal general artificial intelligence model. Our model integrates ten different modalities into a unified framework, including one-dimensional (language, code, table), two-dimensional (RGB, SAR, multispectral, hyperspectral, graph, trajectory), and three-dimensional (point cloud) modalities. To achieve modal cohesion, AllSpark introduces a modal bridge and multimodal large language model (LLM) to map diverse modal features into the language feature space. To maintain modality autonomy, AllSpark uses modality-specific encoders to extract the tokens of various spatio-temporal modalities. Finally, observing a gap between the model's interpretability and downstream tasks, we designed modality-specific prompts and task heads, enhancing the model's generalization capability across specific tasks. Experiments indicate that the incorporation of language enables AllSpark to excel in few-shot classification tasks for RGB and point cloud modalities without additional training, surpassing baseline performance by up to 41.82%. Additionally, AllSpark, despite lacking expert knowledge in most spatio-temporal modalities and utilizing a unified structure, demonstrates strong adaptability across ten modalities. LaRF and AllSpark contribute to the shift in the research paradigm in spatio-temporal intelligence, transitioning from a modality-specific and task-specific paradigm to a general paradigm. The source code is available at https://github.com/GeoX-Lab/AllSpark.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZZZAAAAA完成签到,获得积分10
刚刚
毛球发布了新的文献求助10
刚刚
1秒前
momo发布了新的文献求助10
2秒前
Adam完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
Sunnig盈完成签到,获得积分10
4秒前
慕青应助ShiSakura采纳,获得10
5秒前
Shelby发布了新的文献求助10
5秒前
跳跃的萧完成签到,获得积分20
6秒前
Akim应助满意恋风采纳,获得10
6秒前
liuxiao完成签到,获得积分20
6秒前
英俊的铭应助单一采纳,获得10
6秒前
6秒前
CC发布了新的文献求助10
7秒前
ChienChen完成签到,获得积分20
8秒前
李爱国应助王梦秋采纳,获得10
10秒前
10秒前
Mindy完成签到,获得积分10
11秒前
小马甲应助耍酷剑封采纳,获得10
11秒前
hahahah完成签到,获得积分10
12秒前
老实用户完成签到 ,获得积分10
12秒前
12秒前
执着幻桃完成签到,获得积分10
12秒前
zjq发布了新的文献求助10
13秒前
14秒前
LXX完成签到,获得积分10
14秒前
bboo完成签到,获得积分10
15秒前
15秒前
浮游应助甜甜戎采纳,获得10
15秒前
王梦秋发布了新的文献求助10
17秒前
Owen应助ChienChen采纳,获得20
17秒前
Eileen完成签到 ,获得积分10
17秒前
18秒前
18秒前
Jasper应助三角架采纳,获得10
19秒前
满意恋风发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
浮游应助175采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424595
求助须知:如何正确求助?哪些是违规求助? 4538935
关于积分的说明 14164426
捐赠科研通 4455911
什么是DOI,文献DOI怎么找? 2443990
邀请新用户注册赠送积分活动 1435069
关于科研通互助平台的介绍 1412452