材料科学
生物相容性
脚手架
生物医学工程
细胞外基质
生物材料
再生(生物学)
微观结构
骨组织
烧结
扫描电子显微镜
复合材料
纳米技术
冶金
医学
化学
生物化学
细胞生物学
生物
作者
Kiyofumi Takabatake,Eiki Yamachika,Hidetsugu Tsujigiwa,Yasushi Takeda,M. Kimura,Shin Takagi,Hitoshi Nagatsuka,Seiji Iida
摘要
Abstract In recent years, artificial biological materials have been commonly used for the treatment of bone tissue defects caused by trauma, tumors, or surgical stress. Although tricalcium phosphate (TCP) is a promising absorbent bone tissue reconstruction biomaterial, it has been reported that its biocompatibility and osteoconductivity depend on its preparation method and sintering temperature. In addition, although it is thought that the microenvironment produced by the extracellular matrix plays an important role in cell growth and differentiation, there have been few studies on how the geometric structure of artificial biological materials affects cells. In the present study, a new honeycomb TCP scaffold containing through‐holes with diameters of 300 µm has been developed. The influence of the sintering temperature on the crystal structure and material properties of the honeycomb TCP scaffold was investigated using scanning electron microscopy and X‐ray diffraction. Its biocompatibility and osteoconductivity were also evaluated by implantation into experimental animals. It was found that a β‐TCP scaffold sintered at 1200°C exhibited high biocompatibility and osteoconductivity, and when it was loaded with BMP‐2, it exhibited both osteoconductivity and osteoinductivity, promoting rapid bone formation in both ectopic and orthotopic areas. It is thus a highly promising bone reconstruction material that is expected to find clinical applications. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 2952–2960, 2014.
科研通智能强力驱动
Strongly Powered by AbleSci AI