已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Group-based trajectory modeling to identify effect of badges in online Q&A communities

弹道 群(周期表) 心理学 计算机科学 化学 物理 天文 有机化学
作者
Yanqing Shi,Yao Zhang
出处
期刊:Information Technology & People [Emerald Publishing Limited]
标识
DOI:10.1108/itp-03-2024-0368
摘要

Purpose The study aims to investigate how badge incentives influence systems shape longitudinal behavioral patterns in online knowledge communities. While prior research based on the goal-gradient hypothesis has documented temporary increases in user contributions preceding badge attainment, the mechanisms underlying sustained behavioral evolution remain underexplored. Design/methodology/approach We employed group-based trajectory modeling to identify distinct behavioral pattern ( N = 2,055) through longitudinal analysis of user activity records. Users’ posting frequency before and after badge acquisition was systematically tracked to observe the steering effect across global and subgroup levels. Multinomial logistic regression analyses examined co-evolutionary relationships between behavioral trajectories and badge incentives. Findings The results reveal three key insights: 1) Badge attainment exerts time-dependent steering effects that differentially influence engagement trajectories across user subgroups. 2) The evolution of user behavior has a close positive correlation with badge incentive, in addition to being influenced by user knowledge characteristics. 3) Strategic adjustment of the number of badges rather than the overall level shows greater potential for activating low-engagement users. Originality/value This research advances incentive mechanism literature by 1) developing a dynamic framework for modeling behavioral trajectories in reward systems, 2) demonstrating heterogeneous badge effects across user segments, especially for low-engagement users and 3) proposing evidence-based guidelines for optimizing badge architectures. The findings provide actionable insights for platform designers seeking to balance engagement boosting and quality maintenance through targeted incentive engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣喜的人龙完成签到 ,获得积分10
2秒前
郑郑发布了新的文献求助10
2秒前
莘莘学子完成签到 ,获得积分10
4秒前
7秒前
奶酪战神完成签到 ,获得积分10
7秒前
9秒前
BinyuZhnag关注了科研通微信公众号
9秒前
西吴完成签到 ,获得积分10
10秒前
落月鹤影完成签到,获得积分10
11秒前
抚琴祛魅完成签到 ,获得积分10
12秒前
14秒前
梁海萍发布了新的文献求助10
19秒前
ceeray23应助科研通管家采纳,获得10
21秒前
21秒前
上官若男应助科研通管家采纳,获得10
21秒前
21秒前
华仔应助科研通管家采纳,获得10
21秒前
程负暄完成签到 ,获得积分10
22秒前
dreamboat完成签到 ,获得积分10
22秒前
29秒前
恋晨完成签到 ,获得积分10
30秒前
直率的外套完成签到,获得积分10
30秒前
贰壹完成签到 ,获得积分10
32秒前
李雯雯完成签到,获得积分10
32秒前
35秒前
38秒前
46秒前
KK完成签到,获得积分10
48秒前
太空工程师完成签到,获得积分10
48秒前
wq完成签到,获得积分10
51秒前
51秒前
行走完成签到,获得积分10
53秒前
墨薄凉完成签到 ,获得积分10
55秒前
55秒前
morena应助marketing采纳,获得10
57秒前
白星辰完成签到 ,获得积分10
59秒前
南曦完成签到 ,获得积分10
1分钟前
1分钟前
momo完成签到,获得积分10
1分钟前
青竹完成签到,获得积分10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209739
求助须知:如何正确求助?哪些是违规求助? 4386912
关于积分的说明 13661937
捐赠科研通 4246363
什么是DOI,文献DOI怎么找? 2329699
邀请新用户注册赠送积分活动 1327477
关于科研通互助平台的介绍 1279863