GenAI Multi-Agent Retrieval Augmented Generation for Oil & Gas Applications

作者
Taras Hnot,H. E. Nasr,D. Zikrach
标识
DOI:10.2118/229506-ms
摘要

Abstract Large Language Models (LLMs) have emerged in recent years as one of the most significant advancements in artificial intelligence. These models enabled the development of intelligent chatbots capable of answering a wide range of user queries by referencing vast amounts of information. However, LLMs have many limitations. Their responses can be unpredictable, often lack domain-specific knowledge, and may include contextual misunderstandings and hallucinations. To address these challenges, Retrieval-Augmented Generation (RAG) has become a prominent technique. RAG systems decouple world knowledge from the model's parameters, combining the generative capabilities of LLMs with advanced information retrieval, processing, and vector storage techniques. These integrations result in responses that are more accurate, contextually relevant, and significantly less prone to hallucination. More recently, Multimodal Large Language Models (MLLMs) have extended LLM capabilities beyond text to include modalities such as images, tables, videos, and charts. These multimodal capabilities are critical for domains like oil and gas (O&G), where data exists in diverse formats. Traditional RAG systems often rely on static pipelines, which limit their effectiveness in handling multimodal queries. However, agentic-based RAG architectures offer a promising solution by enabling dynamic and adaptive processing. In this paper, we introduce a novel GenAI-based multimodal agentic AI assistant for drilling and completion applications (D&C). This domain known for data complexity and variability. By analyzing historical wells' D&C reports, wells' performance, geological characteristics, and production trends from nearby wells, the system enables engineers to identify optimal drilling plans and improve field development. It demonstrates that the GenAI assistant performs well in handling complex, domain-specific questions that required synthesizing several types of data. A series of experiments show significant improvements (contextual understanding, hallucination prevention, and overall reliability) compared to traditional approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
ATTENTION完成签到,获得积分10
2秒前
huilihub完成签到,获得积分10
2秒前
余浅儿发布了新的文献求助10
3秒前
NexusExplorer应助夫子1987采纳,获得10
4秒前
Zhou发布了新的文献求助10
4秒前
lulujiang发布了新的文献求助10
7秒前
Sakura完成签到 ,获得积分10
7秒前
时尚语蓉完成签到,获得积分10
7秒前
lxy完成签到 ,获得积分10
7秒前
xiaoyu发布了新的文献求助10
7秒前
8秒前
彭于晏应助舒服的尔丝采纳,获得10
8秒前
ASIMISMO完成签到,获得积分10
8秒前
9秒前
9秒前
科研通AI6应助柠檬采纳,获得10
9秒前
leopard完成签到,获得积分10
9秒前
张子捷完成签到,获得积分10
11秒前
11秒前
lcd发布了新的文献求助80
12秒前
安静的剑发布了新的文献求助10
12秒前
jianguo发布了新的文献求助10
13秒前
无花果应助甜甜若冰采纳,获得10
14秒前
joxes发布了新的文献求助10
14秒前
15秒前
王亚茹发布了新的文献求助10
15秒前
李健应助嘉宝宝贝贝采纳,获得10
16秒前
16秒前
17秒前
何丽雅发布了新的文献求助10
18秒前
不要长胖发布了新的文献求助10
19秒前
20秒前
暴打小赵发布了新的文献求助10
22秒前
angel完成签到,获得积分10
23秒前
Akim应助哎呀呀采纳,获得10
24秒前
meteor应助joxes采纳,获得10
25秒前
XDF完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5397179
求助须知:如何正确求助?哪些是违规求助? 4517412
关于积分的说明 14063874
捐赠科研通 4429328
什么是DOI,文献DOI怎么找? 2432273
邀请新用户注册赠送积分活动 1424816
关于科研通互助平台的介绍 1403865