亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A hierarchical dynamic fusion and transformer approach for lithium battery state of health prediction

作者
Ming Xu,Xiaodong Miao,Kun Xu,Yang Shi
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (11): 115014-115014
标识
DOI:10.1088/1361-6501/ae1c60
摘要

Abstract Accurate estimation of the state of health of lithium-ion batteries is essential for reliable measurement and monitoring in energy storage systems. However, the battery capacity degradation process exhibits strong nonlinearity and stochastic fluctuations, particularly due to the phenomenon of capacity regeneration, which limits the modeling accuracy and generalization capability of traditional convolutional networks or single-feature extraction methods. To address this issue, this paper proposes a hybrid prediction framework based on a hierarchical feature dynamic fusion (HFDF) module, aiming to achieve multi-scale modeling and efficient feature fusion for complex degradation processes. First, the original capacity sequence is adaptively decomposed using time-varying filter empirical mode decomposition, effectively alleviating the mode mixing problem in traditional methods. The HFDF module then applies an enhanced attention mechanism and multi-level interactions to extract hierarchical features and perform adaptive fusion across high-, medium-, and low-frequency components, maintaining sensitivity to both global degradation trends and local variations while improving multi-scale modeling flexibility. Finally, an improved transformer model with a Pre-LN structure is integrated to further strengthen the modeling of long-term dependencies. Experiments conducted on NASA, CALCE, and noise-affected Xi’an Jiaotong University datasets achieved minimum root mean square error values of 0.0035, 0.0046, and 0.0042, respectively. These experiments demonstrate its superior performance in prediction accuracy, stability, and noise robustness, confirming the effectiveness of the HFDF module and the practical value of the framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wei发布了新的文献求助10
5秒前
葵花籽完成签到,获得积分10
18秒前
最落幕完成签到 ,获得积分10
21秒前
29秒前
奇趣糖发布了新的文献求助10
34秒前
领导范儿应助奇趣糖采纳,获得10
42秒前
大模型应助jjc采纳,获得10
51秒前
1分钟前
jjc发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Progie应助丽优采纳,获得20
1分钟前
方沅完成签到,获得积分10
2分钟前
螃蟹One完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
xy完成签到 ,获得积分10
3分钟前
3分钟前
脑洞疼应助liudy采纳,获得10
3分钟前
gszy1975完成签到,获得积分10
3分钟前
doudou发布了新的文献求助10
3分钟前
Progie应助搞科研的肥宅吴采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
3分钟前
liudy发布了新的文献求助10
3分钟前
3分钟前
嘻嘻哈哈应助liudy采纳,获得10
4分钟前
少管我完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
大个应助科研通管家采纳,获得30
5分钟前
脑洞疼应助科研通管家采纳,获得10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
CipherSage应助科研通管家采纳,获得10
5分钟前
CipherSage应助科研通管家采纳,获得10
5分钟前
5分钟前
大模型应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426548
求助须知:如何正确求助?哪些是违规求助? 4540251
关于积分的说明 14171889
捐赠科研通 4458024
什么是DOI,文献DOI怎么找? 2444772
邀请新用户注册赠送积分活动 1435850
关于科研通互助平台的介绍 1413284