Paper Defects Classification Based on VGG16 and Transfer Learning

计算机科学 学习迁移 人工智能 一般化 卷积神经网络 过程(计算) 模式识别(心理学) 卷积(计算机科学) 机器学习 集合(抽象数据类型) 特征提取 特征(语言学) 方案(数学) 人工神经网络 数据挖掘 数学 操作系统 数学分析 哲学 语言学 程序设计语言
作者
Yun-hui Qu,Wei Tang,Bo Feng
出处
期刊:Peolpeu jong'i gi'sul [Korea Technical Association of the Pulp and Paper Industry]
卷期号:53 (2): 5-14 被引量:3
标识
DOI:10.7584/jktappi.2021.04.53.2.5
摘要

There are some problems in traditional paper defects classification, such as the poor generalization performance, less types of recognition, and insufficient recognition accuracy. The deep learning method provides a new scheme for paper defects classification. However, due to the small sample size of paper defect images set, the over fitting phenomenon is easy to appear in the training process. Aiming this problem, a transfer learning method based on convolutional neural network model is proposed.Firstly, freezing the first seven construction layers of VGG16 network which has been trained by ImageNet, and fine tune the rest convolution layers with the paper defect images set to complete the feature extraction; Secondly, the full connection layers for classification are improved to meet the needs of paper defects classification; Finally, transfer learning strategy is adopted in the training process to improve the efficiency. The experimental results demonstrate that the paper defects classification proposed in our approach can improve the efficiency and accuracy of paper defects recognition. The approach will beneficial for the web inspection process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助恃6采纳,获得10
刚刚
ahxb完成签到,获得积分10
1秒前
Jasper应助Dexter采纳,获得10
1秒前
rayzhanghl完成签到,获得积分10
1秒前
2秒前
xiexuqin完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
Blank完成签到 ,获得积分10
3秒前
Lu完成签到,获得积分10
3秒前
3秒前
3秒前
机智阿智发布了新的文献求助10
4秒前
桔梗花完成签到,获得积分10
4秒前
wwx完成签到,获得积分10
4秒前
5秒前
杰杰完成签到,获得积分20
5秒前
melone完成签到,获得积分10
5秒前
Muller完成签到,获得积分10
5秒前
5秒前
Judy完成签到,获得积分10
5秒前
6秒前
yaya应助娃娃鱼采纳,获得10
6秒前
6秒前
科研通AI2S应助斯文的早晨采纳,获得10
6秒前
yang发布了新的文献求助10
6秒前
晚霞不晚发布了新的文献求助10
6秒前
一只榴莲完成签到,获得积分20
7秒前
邢夏之完成签到 ,获得积分10
7秒前
7秒前
ESTHERDY发布了新的文献求助10
7秒前
一颗西红柿应助旎旎采纳,获得30
8秒前
8秒前
surain发布了新的文献求助10
8秒前
无花果应助牛不可采纳,获得30
8秒前
yc发布了新的文献求助10
9秒前
Sofia完成签到 ,获得积分0
9秒前
kaio发布了新的文献求助10
9秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812032
求助须知:如何正确求助?哪些是违规求助? 3356480
关于积分的说明 10382030
捐赠科研通 3073584
什么是DOI,文献DOI怎么找? 1688326
邀请新用户注册赠送积分活动 812097
科研通“疑难数据库(出版商)”最低求助积分说明 766947