亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GSAN: Graph Self-Attention Network for Learning Spatial–Temporal Interaction Representation in Autonomous Driving

特征学习 图形 注意力网络 代表(政治) 任务(项目管理) 人机交互 卷积神经网络
作者
Luyao Ye,Zezhong Wang,Xinhong Chen,Jianping Wang,Kui Wu,Kejie Lu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (12): 9190-9204 被引量:8
标识
DOI:10.1109/jiot.2021.3093523
摘要

Modeling interactions among vehicles is critical in improving the efficiency and safety of autonomous driving since complex interactions are ubiquitous in many traffic scenarios. To model interactions under different traffic scenarios, most existing works consider interaction information implicitly in their specific tasks with hand-crafted features and predefined maneuvers. Extracting interaction representation, which can be commonly used among different downstream tasks, is not explored. In this article, we propose a general and novel graph self-attention network (GSAN) to learn the spatial–temporal interaction representation among vehicles by a framework consisting of pretraining and fine-tuning. Specifically, in the pretraining step, we construct the GSAN module based on a graph self-attention layer and a gated recurrent unit layer, and use trajectory autoregression to learn the interaction information among vehicles. In the fine-tuning step, we propose two different adaptation schemes to utilize the learned interaction information in various downstream tasks and fine-tune the entire model with only a few steps. To illustrate the effectiveness and generality of our spatial–temporal interaction model, we conduct extensive experiments on two typical interaction-related tasks, namely, lane-changing classification and trajectory prediction. The experiment results demonstrate that our approach significantly outperforms the state-of-the-art solutions of these two tasks. We also visualize the impact of surrounding vehicles on the ego vehicle in different interaction scenes. The visualization offers an intuitive explanation on how our model captures the dynamic changing interactions among vehicles and makes good predictions in various interaction-related tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luck完成签到,获得积分10
8秒前
糊涂的万发布了新的文献求助10
28秒前
开霁完成签到 ,获得积分10
29秒前
惊鸿H完成签到 ,获得积分10
29秒前
Ava应助科研通管家采纳,获得10
29秒前
我是老大应助科研通管家采纳,获得10
29秒前
斯文败类应助科研通管家采纳,获得10
29秒前
30秒前
30秒前
32秒前
33秒前
糊涂的万完成签到,获得积分10
35秒前
CodeCraft应助南淮采纳,获得10
36秒前
zyin发布了新的文献求助10
38秒前
40秒前
郎谋完成签到,获得积分10
44秒前
yy发布了新的文献求助10
44秒前
1分钟前
yy完成签到,获得积分10
1分钟前
顺利的八宝粥完成签到 ,获得积分20
1分钟前
dmi完成签到,获得积分10
1分钟前
RONG完成签到 ,获得积分10
1分钟前
shentaii完成签到,获得积分10
1分钟前
爆米花应助leo采纳,获得10
1分钟前
缺粥完成签到 ,获得积分10
1分钟前
完美世界应助科研小白采纳,获得10
1分钟前
陈小子完成签到 ,获得积分10
1分钟前
自由的中蓝完成签到 ,获得积分10
1分钟前
1分钟前
bear完成签到 ,获得积分10
1分钟前
1分钟前
南淮发布了新的文献求助10
1分钟前
1分钟前
南淮完成签到,获得积分10
1分钟前
默默襄完成签到 ,获得积分10
2分钟前
2分钟前
zyin完成签到,获得积分10
2分钟前
hsy发布了新的文献求助10
2分钟前
2分钟前
Chai发布了新的文献求助10
2分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5210134
求助须知:如何正确求助?哪些是违规求助? 4387108
关于积分的说明 13662302
捐赠科研通 4246713
什么是DOI,文献DOI怎么找? 2329917
邀请新用户注册赠送积分活动 1327664
关于科研通互助平台的介绍 1280126