Construction and validation of a novel nomogram for prediction of lymph node metastasis in HER2-positive breast cancer: based on the optimal number of examined lymph nodes for accurate nodal staging

医学 列线图 乳腺癌 淋巴结 肿瘤科 内科学 生殖医学 淋巴 转移 腋窝 淋巴结转移 放射科 癌症 病理 怀孕 生物 遗传学
作者
Zhendong Sun,Yan Zhang,Yu-Shen Yang,Chu-Yun Liu,Meng-Qin Pei,Weidong Fu,Hongyi He
出处
期刊:BMC Women's Health [BioMed Central]
卷期号:25 (1)
标识
DOI:10.1186/s12905-025-03663-w
摘要

This study aimed to construct and validate a novel nomogram for prediction of lymph node metastasis in HER2-positive breast cancer based on the optimal number of examined lymph nodes (ELNs) for accurate nodal staging. We included 4,040 patients diagnosed with HER2-positive breast cancer from the SEER database, randomly allocating them into training and validation cohorts in a 7:3 ratio. The optimal number of ELNs was identified via piecewise linear regression. The association of ELNs count with nodal migration was evaluated through Logistic Regression (LR) analysis and Random Forest (RF). The nomogram was constructed, and its' performance was evaluated by the receiver operating characteristic curves, calibration curve and Decision curve analysis curves. The optimal number of ELNs was 13. LR and RF identified the optimal number of ELNs, radiotherapy status, chemotherapy status, T stage, and grade as independent predictive variables for node metastasis, which were used in the nomogram's construction. And the area under the curve values for the nomogram were 0.829 (95% confidence interval (CI): 0.813–0.845) and 0.833 (95% CI:0.808–0.858) in the training and test split respectively, surpassing those of the optimal number of ELNs (0.649, 95% CI: 0.631–0.667 and 0.676, 95% CI:0.648–0.704). Calibration plots exhibited low Brier scores (0.150 for training split, 0.145 for test split). This study developed a novel nomogram that integrates the optimal number of ELNs with other independent risk factors, facilitating individualized prediction of lymph node metastasis in patients with HER2-positive breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
甜蜜的楷瑞应助Ever余儿采纳,获得10
2秒前
情怀应助博修采纳,获得10
2秒前
脑洞疼应助XxxxxtPuCO采纳,获得10
5秒前
Jae完成签到 ,获得积分10
5秒前
无花果应助277采纳,获得10
5秒前
5秒前
6秒前
shabnam发布了新的文献求助10
6秒前
sht完成签到,获得积分10
7秒前
8秒前
Xxxxzzz完成签到,获得积分10
8秒前
rek发布了新的文献求助10
9秒前
iWanted完成签到,获得积分10
9秒前
10秒前
RONG发布了新的文献求助10
13秒前
Hello应助kersen采纳,获得10
13秒前
朴素盼夏发布了新的文献求助10
14秒前
思源应助糖不太甜采纳,获得10
14秒前
汉堡包应助糖不太甜采纳,获得10
14秒前
田様应助糖不太甜采纳,获得10
14秒前
FashionBoy应助糖不太甜采纳,获得10
14秒前
今后应助糖不太甜采纳,获得10
14秒前
CipherSage应助糖不太甜采纳,获得10
14秒前
16秒前
xiangmai完成签到 ,获得积分10
16秒前
甜蜜的楷瑞应助wslzty采纳,获得10
17秒前
熹微发布了新的文献求助10
19秒前
Akim应助奋斗的猎豹采纳,获得10
19秒前
John完成签到 ,获得积分10
20秒前
傲娇的冷卉完成签到 ,获得积分10
22秒前
熹微完成签到,获得积分10
23秒前
25秒前
第二支羽毛关注了科研通微信公众号
25秒前
义气的访波完成签到,获得积分10
25秒前
复杂若男完成签到,获得积分10
26秒前
小袁冲冲冲完成签到,获得积分10
27秒前
狂野从雪完成签到,获得积分20
28秒前
狂野从雪发布了新的文献求助10
31秒前
RONG完成签到,获得积分10
31秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4046092
求助须知:如何正确求助?哪些是违规求助? 3583836
关于积分的说明 11390716
捐赠科研通 3311111
什么是DOI,文献DOI怎么找? 1822153
邀请新用户注册赠送积分活动 894354
科研通“疑难数据库(出版商)”最低求助积分说明 816171