BSSNet: A Real-Time Semantic Segmentation Network for Road Scenes Inspired From AutoEncoder

自编码 计算机科学 分割 人工智能 计算机视觉 图像分割 模式识别(心理学) 人工神经网络
作者
Xiaoqiang Shi,Zhenyu Yin,Guangjie Han,Wenzhuo Liu,Li Qin,Yuanguo Bi,Shurui Li
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 3424-3438 被引量:23
标识
DOI:10.1109/tcsvt.2023.3325360
摘要

Although semantic segmentation methods have made remarkable progress so far, their long inference process limits their use in practical applications. Recently, some two-branch and three-branch real-time segmentation networks have been proposed to improve segmentation accuracy by adding branches to extract spatial or border information. For the design of extracting spatial information branches, preserving high-resolution features or adding segmentation loss to guide spatial branches are commonly used methods to extract spatial information. However, these approaches are not the most efficient. To solve the problem, we design the spatial information extraction branch as an AutoEncoder structure, which allows us to extract the spatial structure and features of the image during the encoding and decoding process of the AutoEncoder. Border, semantic and spatial information are all helpful for segmentation tasks, and efficiently fusing these three kinds of information can obtain better feature representation compared to the fusion of two types of information in the dual-branch network. However, existing three-branch networks have yet to explore this aspect deeply. Therefore, this paper designs a new three-branch network based on this starting point. In addition, we also propose a feature fusion module called the Unified Multi-Feature Fusion module (UMF), which can fuse multiple features efficiently. Our method achieves a state-of-the-art trade-off between inference speed and accuracy on the Cityscapes, CamVid, and NightCity datasets. Specifically, BSSNet-T achieves 78.8% mIoU at 115.8 FPS on the Cityscapes dataset, 79.5% mIoU at 170.8 FPS on the CamVid dataset, and 52.6% mIoU at 172.3 FPS on the NightCity dataset. Code is available at https://github.com/SXQ-STUDY/BSSNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无机盐完成签到 ,获得积分10
3秒前
3秒前
耶椰耶完成签到 ,获得积分10
4秒前
复成完成签到 ,获得积分10
5秒前
于冬雪完成签到,获得积分10
5秒前
5秒前
xxfsx应助酷酷小凡采纳,获得10
6秒前
hugh完成签到 ,获得积分10
10秒前
闫栋发布了新的文献求助10
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
mylian发布了新的文献求助10
12秒前
隐形曼青应助姜丝罐罐n采纳,获得10
14秒前
lysenko完成签到 ,获得积分10
14秒前
14秒前
顾矜应助chixueqi采纳,获得10
15秒前
完美世界应助M跃采纳,获得10
15秒前
方梦坤完成签到,获得积分10
15秒前
123完成签到 ,获得积分10
16秒前
17秒前
20秒前
22秒前
23秒前
ganyu59完成签到 ,获得积分10
24秒前
默默善愁发布了新的文献求助10
25秒前
坚定的枕头完成签到 ,获得积分20
26秒前
adcffgg发布了新的文献求助10
27秒前
27秒前
小嘉饼饼发布了新的文献求助20
28秒前
量子星尘发布了新的文献求助10
29秒前
29秒前
30秒前
今后应助虚幻的不愁采纳,获得10
30秒前
min完成签到,获得积分10
31秒前
lll完成签到 ,获得积分10
32秒前
嗯哼哈哈发布了新的文献求助10
33秒前
33秒前
人123456完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425362
求助须知:如何正确求助?哪些是违规求助? 4539459
关于积分的说明 14168091
捐赠科研通 4456964
什么是DOI,文献DOI怎么找? 2444356
邀请新用户注册赠送积分活动 1435316
关于科研通互助平台的介绍 1412740