反馈回路
循环(图论)
计算机科学
建筑
正面反馈
DNA
计算机体系结构
光电子学
控制理论(社会学)
材料科学
生物
遗传学
工程类
数学
电气工程
人工智能
控制(管理)
计算机安全
地理
考古
组合数学
作者
Anvita Gupta,James Zou
出处
期刊:Cornell University - arXiv
日期:2018-04-05
被引量:63
标识
DOI:10.48550/arxiv.1804.01694
摘要
Generative Adversarial Networks (GANs) represent an attractive and novel approach to generate realistic data, such as genes, proteins, or drugs, in synthetic biology. Here, we apply GANs to generate synthetic DNA sequences encoding for proteins of variable length. We propose a novel feedback-loop architecture, called Feedback GAN (FBGAN), to optimize the synthetic gene sequences for desired properties using an external function analyzer. The proposed architecture also has the advantage that the analyzer need not be differentiable. We apply the feedback-loop mechanism to two examples: 1) generating synthetic genes coding for antimicrobial peptides, and 2) optimizing synthetic genes for the secondary structure of their resulting peptides. A suite of metrics demonstrate that the GAN generated proteins have desirable biophysical properties. The FBGAN architecture can also be used to optimize GAN-generated datapoints for useful properties in domains beyond genomics.
科研通智能强力驱动
Strongly Powered by AbleSci AI