Deep reinforcement learning based energy management strategy for multi-mode hybrid electric vehicle with dual planetary gear set

强化学习 对偶(语法数字) 电动汽车 模式(计算机接口) 集合(抽象数据类型) 计算机科学 汽车工程 工程类 人工智能 物理 人机交互 功率(物理) 量子力学 文学类 艺术 程序设计语言
作者
Jianhao Zhou,Zhenlin Li,Chunyan Wang,Wanzhong Zhao
标识
DOI:10.1177/09544070251341959
摘要

Energy Management Strategy (EMS) plays a pivotal role in enhancing the fuel economy of hybrid electric vehicles. Deep Reinforcement Learning (DRL), as a cutting-edge optimization technique, holds remarkable potential for improving EMS. However, traditional DRL control algorithms encounter limitations when dealing with the complex and unique discrete-continuous hybrid action space inherent to dual planetary gear hybrid systems. To address this challenge, this paper innovatively proposes a DRL algorithm based on the Parameterized Deep Q-Network (P-DQN). This algorithm can simultaneously regulate the clutch’s operational state and the engine’s output speed. Through parameterized action design, we effectively convert continuous actions into discrete parameterized representations, enabling precise simultaneous control over discrete and continuous actions. Based on P-DQN, we further introduce the Multi-Pass Q-network structure to optimize the neural network. This structure severs the correlation between irrelevant parameters and the Q-value, thereby enhancing the accuracy and efficiency of the control strategy. We denominate this refined algorithm as Multi-Pass Deep Q-Network(MP-DQN). To validate the effectiveness of the MP-DQN algorithm, we conducted comprehensive comparative experiments against P-DQN and other typical DRL-based methods such as DDPG. The results demonstrate significant fuel economy improvements with the MP-DQN-based EMS, proving the effectiveness and superiority of the proposed approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助ovalCC采纳,获得10
刚刚
niniyiya完成签到,获得积分10
1秒前
1秒前
镓氧锌钇铀应助小肖采纳,获得20
1秒前
Owen应助小猪佩奇采纳,获得10
1秒前
李浩完成签到,获得积分10
3秒前
haojiewu发布了新的文献求助10
4秒前
JamesPei应助坚定荔枝采纳,获得10
4秒前
5秒前
小情绪发布了新的文献求助10
5秒前
你好完成签到,获得积分20
5秒前
7秒前
7秒前
8秒前
12秒前
小蘑菇应助无名采纳,获得30
12秒前
12秒前
miaolingcool发布了新的文献求助10
13秒前
小猪佩奇发布了新的文献求助10
13秒前
14秒前
xzl发布了新的文献求助10
14秒前
15秒前
hamster发布了新的文献求助10
15秒前
17秒前
Zoe完成签到,获得积分10
17秒前
小情绪发布了新的文献求助10
19秒前
lixiangrui110发布了新的文献求助10
22秒前
苏木完成签到,获得积分10
22秒前
changping应助xzl采纳,获得10
23秒前
Lucas应助xiaweihan采纳,获得10
24秒前
开心榴莲大王完成签到 ,获得积分10
25秒前
漂亮的若颜完成签到,获得积分10
28秒前
科研通AI5应助科研混子采纳,获得10
29秒前
Gentleman完成签到,获得积分10
29秒前
yuanyueyue完成签到,获得积分20
29秒前
小情绪发布了新的文献求助10
30秒前
30秒前
31秒前
Akim应助过时的汲采纳,获得10
32秒前
sxmt123456789完成签到,获得积分10
33秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208491
求助须知:如何正确求助?哪些是违规求助? 4386000
关于积分的说明 13659449
捐赠科研通 4244993
什么是DOI,文献DOI怎么找? 2329043
邀请新用户注册赠送积分活动 1326831
关于科研通互助平台的介绍 1279056