Interpreting the prediction results of the tree‐based gradient boosting models for financial distress prediction with an explainable machine learning approach

梯度升压 Boosting(机器学习) 决策树 预测建模 人工智能 财务困境 机器学习 计量经济学 范畴变量 计算机科学 财务 随机森林 经济 金融体系
作者
Jiaming Liu,Chengzhang Li,Peng Ouyang,Jiajia Liu,Chong Wu
出处
期刊:Journal of Forecasting [Wiley]
卷期号:42 (5): 1112-1137 被引量:24
标识
DOI:10.1002/for.2931
摘要

Abstract Financial distress prediction is a major issue in the burgeoning fintech field. Given the importance of the reliability of the prediction results, there is an urgent need for the explanatory ability of the financial distress prediction model. From the modeling and explanation point of view, this study employs four prevailing tree‐based gradient boosting models, namely, gradient boosting decision tree, extreme gradient boosting, light gradient boosting machine, and categorical boosting, to build financial distress prediction models by using financial data of listed companies in China from 1998 to 2014 and five different prediction time spans. We observe that tree‐based gradient boosting models have better prediction performance than other prediction models. To explore the reasons for the prediction results, we deploy TreeSHAP. Then, we use Shapley regression to examine the statistically significant relationships between financial indicators and financial distress. We discover that financial indicators, such as net asset value per share and ratio of operating profits to current liabilities, are significantly related to financial distress. There is usually a nonlinear relationship between the financial predictors and prediction target. Thus, this study provides an effective method for financial distress prediction and an explanation of the results for listed companies in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林佳一完成签到,获得积分10
刚刚
大脸妹发布了新的文献求助10
刚刚
Owen应助倦鸟归林采纳,获得10
刚刚
Wang发布了新的文献求助10
刚刚
阿鸿完成签到,获得积分10
1秒前
1秒前
1秒前
F_echo完成签到 ,获得积分10
1秒前
1秒前
艾莎莎5114完成签到,获得积分10
2秒前
无花果应助RMY采纳,获得10
3秒前
一十六完成签到,获得积分20
4秒前
YUZU完成签到,获得积分10
4秒前
揽月yue应助xiaozhou采纳,获得10
4秒前
杰帅完成签到,获得积分10
4秒前
CodeCraft应助猪猪hero采纳,获得10
4秒前
哈理老萝卜应助Shann采纳,获得10
5秒前
Burke完成签到,获得积分10
5秒前
5秒前
我是老大应助渣155136采纳,获得10
5秒前
Firenze发布了新的文献求助10
5秒前
带头大哥应助萧水白采纳,获得100
6秒前
6秒前
shinble发布了新的文献求助30
7秒前
7秒前
7秒前
一十六发布了新的文献求助10
7秒前
CodeCraft应助wjw采纳,获得10
7秒前
8秒前
时势造英雄完成签到 ,获得积分10
8秒前
李仁完成签到,获得积分10
9秒前
飘逸千万完成签到,获得积分10
9秒前
菜菜Cc完成签到,获得积分10
9秒前
在水一方应助Dr.Joseph采纳,获得10
9秒前
9秒前
Orange应助Firenze采纳,获得10
10秒前
10秒前
烟花应助willam采纳,获得10
10秒前
CipherSage应助机智小土豆采纳,获得10
11秒前
Rana发布了新的文献求助10
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812110
求助须知:如何正确求助?哪些是违规求助? 3356551
关于积分的说明 10382609
捐赠科研通 3073683
什么是DOI,文献DOI怎么找? 1688394
邀请新用户注册赠送积分活动 812128
科研通“疑难数据库(出版商)”最低求助积分说明 766960