An automated sleep staging tool based on simple statistical features of mice electroencephalography (EEG) and electromyography (EMG) data

脑电图 肌电图 睡眠(系统调用) 模式识别(心理学) 计算机科学 神经科学 物理医学与康复 听力学 心理学 语音识别 人工智能 医学 操作系统
作者
Rikuhiro G. Yamada,Kyoko Matsuzawa,Koji L. Ode,Hiroki R. Ueda
出处
期刊:European Journal of Neuroscience [Wiley]
卷期号:60 (7): 5467-5486 被引量:1
标识
DOI:10.1111/ejn.16465
摘要

Abstract Electroencephalogram (EEG) and electromyogram (EMG) are fundamental tools in sleep research. However, investigations into the statistical properties of rodent EEG/EMG signals in the sleep–wake cycle have been limited. The lack of standard criteria in defining sleep stages forces researchers to rely on human expertise to inspect EEG/EMG. The recent increasing demand for analysing large‐scale and long‐term data has been overwhelming the capabilities of human experts. In this study, we explored the statistical features of EEG signals in the sleep–wake cycle. We found that the normalized EEG power density profile changes its lower and higher frequency powers to a comparable degree in the opposite direction, pivoting around 20–30 Hz between the NREM sleep and the active brain state. We also found that REM sleep has a normalized EEG power density profile that overlaps with wakefulness and a characteristic reduction in the EMG signal. Based on these observations, we proposed three simple statistical features that could span a 3D space. Each sleep–wake stage formed a separate cluster close to a normal distribution in the 3D space. Notably, the suggested features are a natural extension of the conventional definition, making it useful for experts to intuitively interpret the EEG/EMG signal alterations caused by genetic mutations or experimental treatments. In addition, we developed an unsupervised automatic staging algorithm based on these features. The developed algorithm is a valuable tool for expediting the quantitative evaluation of EEG/EMG signals so that researchers can utilize the recent high‐throughput genetic or pharmacological methods for sleep research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利的语山完成签到,获得积分20
1秒前
2秒前
EBA完成签到,获得积分10
3秒前
5秒前
丘比特应助孤独靖柏采纳,获得10
6秒前
酶没美镁完成签到,获得积分10
6秒前
老实寒梦发布了新的文献求助100
7秒前
8秒前
9秒前
yuki完成签到,获得积分10
9秒前
shh发布了新的文献求助10
9秒前
香蕉觅云应助123456采纳,获得10
10秒前
12秒前
yuki发布了新的文献求助10
12秒前
12秒前
郁马谷完成签到,获得积分20
13秒前
谨慎含双发布了新的文献求助30
13秒前
14秒前
圆仔发布了新的文献求助10
15秒前
16秒前
17秒前
冯123发布了新的文献求助10
18秒前
孤独靖柏发布了新的文献求助10
18秒前
嘿嘿应助17采纳,获得10
19秒前
yookia应助amber采纳,获得10
19秒前
共享精神应助淡淡的忧伤采纳,获得10
20秒前
园蛤镇第一出生完成签到,获得积分10
20秒前
陶一二完成签到,获得积分10
21秒前
21秒前
22秒前
宇智波白哉完成签到,获得积分10
22秒前
烟花应助圆仔采纳,获得10
23秒前
剑K完成签到,获得积分10
23秒前
23秒前
无花果应助细心溪流采纳,获得10
24秒前
博修发布了新的文献求助150
26秒前
26秒前
剑K发布了新的文献求助10
27秒前
Aipoi发布了新的文献求助10
27秒前
28秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4046349
求助须知:如何正确求助?哪些是违规求助? 3584050
关于积分的说明 11391298
捐赠科研通 3311575
什么是DOI,文献DOI怎么找? 1822221
邀请新用户注册赠送积分活动 894425
科研通“疑难数据库(出版商)”最低求助积分说明 816243