亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BD-StableNet: a deep stable learning model with an automatic lesion area detection function for predicting malignancy in BI-RADS category 3-4A lesions

可解释性 深度学习 人工智能 医学 恶性肿瘤 机器学习 乳房成像 乳腺癌 病变 计算机科学 放射科 乳腺摄影术 癌症 病理 内科学
作者
Hui Qu,Guanglei Chen,Tong Li,Mingchen Zou,Jiaxi Liu,Canwei Dong,Ye Tian,Caigang Liu,Xiaoyu Cui
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
被引量:1
标识
DOI:10.1088/1361-6560/ad953e
摘要

The latest developments combining deep learning technology and medical image data have attracted wide attention and provide efficient noninvasive methods for the early diagnosis of breast cancer. The success of this task often depends on a large amount of data annotated by medical experts, which is time-consuming and may not always be feasible in the biomedical field. The lack of interpretability has greatly hindered the application of deep learning in the medical field. Currently, deep stable learning, including causal inference, make deep learning models more predictive and interpretable. In this study, to distinguish malignant tumors in Breast Imaging-Reporting and Data System (BI-RADS) category 3-4A breast lesions, we propose BD-StableNet, a deep stable learning model for the automatic detection of lesion areas. In this retrospective study, we collected 3103 breast ultrasound images (1418 benign and 1685 malignant lesions) from 493 patients (361 benign and 132 malignant lesion patients) for model training and testing. Compared with other mainstream deep learning models, BD-StableNet has better prediction performance (accuracy = 0.952, area under the curve (AUC) = 0.982, precision = 0.970, recall = 0.941, F1-score = 0.955 and specificity = 0.965). The lesion area prediction and class activation map (CAM) results both verify that our proposed model is highly interpretable. The results indicate that BD-StableNet significantly enhances diagnostic accuracy and interpretability, offering a promising noninvasive approach for the diagnosis of BI-RADS category 3-4A breast lesions. Clinically, the use of BD-StableNet could reduce unnecessary biopsies, improve diagnostic efficiency, and ultimately enhance patient outcomes by providing more precise and reliable assessments of breast lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
z123完成签到,获得积分10
10秒前
quantumcell发布了新的文献求助10
10秒前
26秒前
27秒前
Owen应助quantumcell采纳,获得10
29秒前
1分钟前
1分钟前
嘿嘿应助科研通管家采纳,获得10
1分钟前
嘿嘿应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助小狗雨伞采纳,获得30
1分钟前
韩笑完成签到,获得积分20
1分钟前
2分钟前
小狗雨伞发布了新的文献求助30
2分钟前
小狗雨伞完成签到,获得积分10
2分钟前
2分钟前
Re_searcher完成签到,获得积分10
2分钟前
汉堡包应助小齐采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
爆米花应助小小蟋蟀采纳,获得50
3分钟前
3分钟前
3分钟前
wjjjjjjj发布了新的文献求助10
4分钟前
852应助胖哥采纳,获得10
4分钟前
4分钟前
mashibeo完成签到,获得积分10
4分钟前
5分钟前
小小蟋蟀发布了新的文献求助50
5分钟前
英俊的铭应助科研通管家采纳,获得10
5分钟前
Hayat应助科研通管家采纳,获得10
5分钟前
5分钟前
胖哥发布了新的文献求助10
5分钟前
5分钟前
linhi发布了新的文献求助10
5分钟前
lbl完成签到,获得积分10
6分钟前
6分钟前
6分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4060987
求助须知:如何正确求助?哪些是违规求助? 3599531
关于积分的说明 11432220
捐赠科研通 3323567
什么是DOI,文献DOI怎么找? 1827320
邀请新用户注册赠送积分活动 897914
科研通“疑难数据库(出版商)”最低求助积分说明 818699