Light harvesting coating design accelerated by deep learning for semi-transparent polymer solar cells

材料科学 光电子学 涂层 退火(玻璃) 模拟退火 防反射涂料 光学 计算机科学 纳米技术 复合材料 算法 物理
作者
Hongnan Chen,Yi Ruan,Chenying Yang,Ting Zhang,Kan Li
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:119 (2) 被引量:3
标识
DOI:10.1063/5.0056297
摘要

The reduction in optical loss in polymer solar cells (PSCs) plays a crucial role in the development of high-performance PSCs devices. Especially for the semi-transparent PSCs, high reflective transparent electrodes lead to low energy utilization. Optical multi-layer coating is proven to be an effective approach to reduce the reflection and transmission loss. In this work, a double-sided PSCs device coating strategy was used to reduce the device optical loss. Optical coating design on a multi-layer PSCs device is far more complex. The dispersion and thickness of each layer both have an impact on the optical property. Meanwhile, the illuminance spectrum is based on the solar AM1.5 spectrum rather than a common-used standard illuminance CIE-E spectrum. It brings many difficulties to the optical design, and the global optimization is generally time-consuming. To fast solve the optimization problem in optical design of the multi-layer coating for PSCs, we combine deep learning (DL) method with hybrid optimization algorithms. By designing a multi-layer device structure to achieve the highest light harvesting with tandem simplex simulated annealing and assisted simplex simulated annealing, we show unambiguously that DL is a powerful tool to minimize the computation cost and maximize the design efficiency for optical multi-layer design. The optical loss of the semi-transparent device is reduced from 52.71% to 27.95%, and the simulation time is reduced by a factor of 276 compared with standard simplex simulated annealing. This provides an efficient optical design strategy in multi-layer coating design for PSCs to achieve desired optical performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
3秒前
7秒前
KLM完成签到,获得积分10
7秒前
小二郎应助烦烦烦采纳,获得30
7秒前
8秒前
希望天下0贩的0应助kyros采纳,获得10
9秒前
sun发布了新的文献求助10
10秒前
11秒前
12秒前
隐形曼青应助11采纳,获得10
12秒前
12秒前
美女完成签到,获得积分10
12秒前
百里鬼神完成签到 ,获得积分10
13秒前
小郭小郭福气多多完成签到,获得积分10
14秒前
冷静的小海豚完成签到,获得积分10
16秒前
17秒前
Xiong完成签到,获得积分10
17秒前
研友_VZG7GZ应助迷路的初柔采纳,获得10
18秒前
量子星尘发布了新的文献求助10
21秒前
李健的小迷弟应助宫长君采纳,获得10
21秒前
lan完成签到,获得积分10
21秒前
梨涡宝宝完成签到 ,获得积分10
22秒前
猪猪侠发布了新的文献求助10
22秒前
迷路又夏发布了新的文献求助10
23秒前
xxm发布了新的文献求助10
24秒前
Genius发布了新的文献求助10
25秒前
小贾完成签到,获得积分10
28秒前
Hello应助等人的咖啡采纳,获得10
28秒前
Mori发布了新的文献求助10
29秒前
所所应助Evan采纳,获得10
29秒前
30秒前
Kevin发布了新的文献求助10
31秒前
星辰大海应助henzhidequxian采纳,获得10
31秒前
脑洞疼应助陈转霞采纳,获得10
31秒前
32秒前
kingfly2010完成签到,获得积分10
32秒前
小青椒应助威武的幻儿采纳,获得50
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425117
求助须知:如何正确求助?哪些是违规求助? 4539252
关于积分的说明 14166344
捐赠科研通 4456403
什么是DOI,文献DOI怎么找? 2444186
邀请新用户注册赠送积分活动 1435189
关于科研通互助平台的介绍 1412553