亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Computing the Similarity Estimate Using Approximate Memory

相似性(几何) 计算机科学 算法 缩放比例 最近邻搜索 理论计算机科学 数据挖掘 数学 人工智能 几何学 图像(数学)
作者
Pedro Reviriego,Shanshan Liu,Otmar Ertl,Farzad Niknia,Fabrizio Lombardi
出处
期刊:IEEE Transactions on Emerging Topics in Computing [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 1593-1604 被引量:5
标识
DOI:10.1109/tetc.2021.3109559
摘要

In many computing applications there is a need to compute the similarity of sets of elements. When the sets have many elements or comparison involves many sets, computing the similarity requires significant computational effort and storage capacity. As in most cases, a reasonably accurate estimate is sufficient, many algorithms for similarity estimation have been proposed during the last decades. Those algorithms compute signatures for the sets and use them to estimate similarity. However, as the number of sets that need to be compared grows, even these similarity estimation algorithms require significant memory with its associated power dissipation. This article for the first time considers the use of approximate memories for similarity estimation. A theoretical analysis and simulation results are provided; initially it is shown that similarity sketches can tolerate large bit error rates and thus, they can benefit from using approximate memories without substantially compromising the accuracy of the similarity estimate. An understanding of the effect of errors in the stored signatures on the similarity estimate is pursued. A scheme to mitigate the impact of errors is presented; the proposed scheme tolerates even larger bit error rates and does not need additional memory. For example, bit error rates of up to 10 4 have less than a 1% impact on the accuracy of the estimate when the memory is unprotected, and larger bit errors rates can be tolerated if the memory is parity protected. These findings can be used for voltage supply scaling and increasing the refresh time in SRAMs and DRAMs. Based on those initial results, an enhanced implementation is further proposed for unprotected memories that further extends the range of tolerated BERs and enables power savings of up to 61.31% for SRAMs. In conclusion, this article shows that the use of approximate memories in sketches for similarity estimation provides significant benefits with a negligible impact on accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
汉堡包应助虚幻采纳,获得10
13秒前
野原新知珉完成签到,获得积分20
16秒前
科研通AI6应助inRe采纳,获得10
20秒前
26秒前
思源应助桃花源的瓶起子采纳,获得10
30秒前
胡林发布了新的文献求助10
31秒前
Nichols完成签到,获得积分10
40秒前
香蕉觅云应助科研通管家采纳,获得10
49秒前
汉堡包应助科研通管家采纳,获得10
49秒前
null应助科研通管家采纳,获得10
49秒前
null应助科研通管家采纳,获得10
50秒前
null应助科研通管家采纳,获得10
50秒前
51秒前
flyinthesky完成签到,获得积分10
52秒前
1分钟前
1分钟前
姜磊发布了新的文献求助10
1分钟前
1分钟前
张晓祁完成签到,获得积分10
1分钟前
飞快的小懒猪完成签到 ,获得积分10
1分钟前
yueying完成签到,获得积分10
1分钟前
七月份的表完成签到,获得积分10
1分钟前
1分钟前
HYQ完成签到 ,获得积分10
1分钟前
Twonej应助vickyyy采纳,获得30
1分钟前
1分钟前
可一可再完成签到 ,获得积分10
1分钟前
Lucas应助桃花源的瓶起子采纳,获得10
2分钟前
姜磊完成签到,获得积分20
2分钟前
null应助科研通管家采纳,获得10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
2分钟前
曦耀发布了新的文献求助10
3分钟前
ssu90完成签到 ,获得积分10
3分钟前
大模型应助星落枝头采纳,获得10
3分钟前
3分钟前
星落枝头完成签到,获得积分10
3分钟前
星落枝头发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628101
求助须知:如何正确求助?哪些是违规求助? 4715567
关于积分的说明 14963616
捐赠科研通 4785765
什么是DOI,文献DOI怎么找? 2555328
邀请新用户注册赠送积分活动 1516636
关于科研通互助平台的介绍 1477166