电解质
材料科学
锂(药物)
阳极
电导率
离子
金属
金属锂
快离子导体
离子电导率
图层(电子)
化学工程
导线
纳米技术
电极
复合材料
物理化学
冶金
化学
工程类
内分泌学
有机化学
医学
作者
Jiaxu Zhang,Changhong Wang,Matthew Zheng,Minghao Ye,Huiyu Zhai,Jun Li,Gangjian Tan,Xinfeng Tang,Xueliang Sun
出处
期刊:Nano Energy
[Elsevier]
日期:2022-08-04
卷期号:102: 107672-107672
被引量:34
标识
DOI:10.1016/j.nanoen.2022.107672
摘要
Garnet-type solid-state electrolytes are a promising fast lithium-ion conductor due to their high room-temperature ion conductivity and inherent stability against lithium metal. However, interfacial lithiophobic Li 2 CO 3 makes garnet/Li interfacial ionic contact challenging. The general approach to physically or chemically eliminating Li 2 CO 3 inevitably leads to a Li-deficiency layer at the garnet surface, significantly retarding interfacial ion transport. Contrary to the aforementioned approach, herein we chemically upcycle the Li 2 CO 3 on the garnet surface via the double replacement reaction between Li 2 CO 3 and SiO 2 . This approach in-situ constructs an air-stable and lithiophilic Li x SiO y (LSO) on the garnet surface and averts the Li-deficiency layer formation. The LSO modified symmetric cell displays a low interfacial impedance of 3 Ω cm 2 and a high critical current density of 1.2 mA cm −2 at 30 0 C. This work provides a promising strategy to upcycle interfacial Li 2 CO 3 on the garnet electrolyte. We proposed an effective strategy to upcycle the Li 2 CO 3 impurities on the surface of the garnet electrolyte by transforming them into the desired LSO layer. Simultaneously, extra Li 2 CO 3 is added to prevent the formation of the Li-deficiency phase. • The detrimental Li 2 CO 3 on the garnet surface is chemically converted into air-stable lithiophilic Li x SiO y . • The extra supplied lithium prevents the formation of Li-deficiency defects at the garnet surface. • The air-stable Li x SiO y prevents the regeneration of surface Li 2 CO 3 upon exposure to air. • The assembled Li symmetric cell displays a high critical current density of 1.2 mA cm −2 and a low interfacial impedance (3 Ω cm 2 ) at 30 o C.
科研通智能强力驱动
Strongly Powered by AbleSci AI