Cascade learning in multi-task encoder–decoder networks for concurrent bone segmentation and glenohumeral joint clinical assessment in shoulder CT scans

计算机科学 分割 级联 编码器 任务(项目管理) 人工智能 接头(建筑物) 机器学习 计算机视觉 模式识别(心理学) 建筑工程 化学 管理 色谱法 工程类 经济 操作系统
作者
Luca Marsilio,Davide Marzorati,Matteo Rossi,Andrea Moglia,Luca Mainardi,Alfonso Manzotti,Pietro Cerveri
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:165: 103131-103131
标识
DOI:10.1016/j.artmed.2025.103131
摘要

Osteoarthritis is a degenerative condition that affects bones and cartilage, often leading to structural changes, including osteophyte formation, bone density loss, and the narrowing of joint spaces. Over time, this process may disrupt the glenohumeral (GH) joint functionality, requiring a targeted treatment. Various options are available to restore joint functions, ranging from conservative management to surgical interventions, depending on the severity of the condition. This work introduces an innovative deep learning framework to process shoulder CT scans. It features the semantic segmentation of the proximal humerus and scapula, the 3D reconstruction of bone surfaces, the identification of the GH joint region, and the staging of three common osteoarthritic-related conditions: osteophyte formation (OS), GH space reduction (JS), and humeroscapular alignment (HSA). Each condition was stratified into multiple severity stages, offering a comprehensive analysis of shoulder bone structure pathology. The pipeline comprised two cascaded CNN architectures: 3D CEL-UNet for segmentation and 3D Arthro-Net for threefold classification. A retrospective dataset of 571 CT scans featuring patients with various degrees of GH osteoarthritic-related pathologies was used to train, validate, and test the pipeline. Root mean squared error and Hausdorff distance median values for 3D reconstruction were 0.22 mm and 1.48 mm for the humerus and 0.24 mm and 1.48 mm for the scapula, outperforming state-of-the-art architectures and making it potentially suitable for a PSI-based shoulder arthroplasty preoperative plan context. The classification accuracy for OS, JS, and HSA consistently reached around 90% across all three categories. The computational time for the entire inference pipeline was less than 15 s, showcasing the framework's efficiency and compatibility with orthopedic radiology practice. The achieved reconstruction and classification accuracy, combined with the rapid processing time, represent a promising advancement towards the medical translation of artificial intelligence tools. This progress aims to streamline the preoperative planning pipeline, delivering high-quality bone surfaces and supporting surgeons in selecting the most suitable surgical approach according to the unique patient joint conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助诚心茈采纳,获得10
刚刚
景行发布了新的文献求助10
1秒前
1秒前
xiaojingling完成签到,获得积分10
1秒前
2秒前
3秒前
4秒前
4秒前
水水的发布了新的文献求助10
5秒前
学术蝗虫发布了新的文献求助10
5秒前
浮游应助刻苦的豌豆采纳,获得10
6秒前
柒丶完成签到,获得积分10
6秒前
12345完成签到,获得积分10
6秒前
miao完成签到,获得积分10
6秒前
谈舒怡发布了新的文献求助10
7秒前
95发布了新的文献求助10
8秒前
十八发布了新的文献求助10
8秒前
JZ133发布了新的文献求助10
8秒前
钮卿完成签到,获得积分10
9秒前
9秒前
10秒前
科研通AI6应助jiaming采纳,获得30
10秒前
10秒前
善学以致用应助Lily采纳,获得10
12秒前
情怀应助绝尘采纳,获得10
13秒前
学术蝗虫完成签到,获得积分10
13秒前
谈舒怡完成签到,获得积分10
14秒前
Kevin Huang完成签到,获得积分10
14秒前
bkagyin应助JJJ采纳,获得30
15秒前
15秒前
15秒前
16秒前
16秒前
95完成签到,获得积分10
17秒前
17秒前
刘得运发布了新的文献求助30
17秒前
nbing发布了新的文献求助10
17秒前
18秒前
Dean应助科研通管家采纳,获得50
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061583
求助须知:如何正确求助?哪些是违规求助? 4285608
关于积分的说明 13355044
捐赠科研通 4103396
什么是DOI,文献DOI怎么找? 2246696
邀请新用户注册赠送积分活动 1252432
关于科研通互助平台的介绍 1183294