Improvement strategies for heuristic algorithms based on machine learning and information concepts: a review of the seahorse optimization algorithm

计算机科学 算法 启发式 人工智能 机器学习 优化算法 数学优化 数学
作者
Shixin Zheng
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:11: e2805-e2805
标识
DOI:10.7717/peerj-cs.2805
摘要

To overcome the mechanical limitations of traditional inertia weight optimization methods, this study draws inspiration from machine learning models and proposes an inertia weight optimization strategy based on the K-nearest neighbors (KNN) principle with dynamic adjustment properties. Unlike conventional approaches that determine inertia weight solely based on the number of iterations, the proposed strategy allows inertia weight to more accurately reflect the relative distance between individuals and the target value. Consequently, it transforms the discrete “iteration-weight” mapping ($t\rightarrow w$) into a continuous “distance-weight” mapping ($d\rightarrow w$), thereby enhancing the adaptability and optimization capability of the algorithm. Furthermore, inspired by the entropy weight method, this study introduces an entropy-based weight allocation mechanism in the crossover and mutation process to improve the efficiency of high-quality information inheritance. To validate its effectiveness, the proposed strategy is incorporated into the Seahorse Optimization Algorithm (SHO) and systematically evaluated using 31 benchmark functions from CEC2005 and CEC2021 test suites. Experimental results demonstrate that the improved SHO algorithm, integrating the logistic-KNN inertia weight optimization strategy and the entropy-based crossover-mutation mechanism, exhibits significant advantages in terms of convergence speed, solution accuracy, and algorithm stability. To further investigate the performance of the proposed improvements, this study conducts ablation experiments to analyze each modification separately. The results confirm that each individual strategy significantly enhances the overall performance of the SHO algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洋洋完成签到,获得积分10
1秒前
淡然冬灵完成签到,获得积分10
2秒前
serendipity完成签到 ,获得积分10
3秒前
萨格完成签到 ,获得积分10
5秒前
laoli2022完成签到,获得积分10
5秒前
Maor完成签到,获得积分0
6秒前
Sylvia完成签到 ,获得积分10
6秒前
lindoudou完成签到,获得积分10
7秒前
kin完成签到 ,获得积分10
9秒前
9秒前
小巧的寻双完成签到,获得积分10
10秒前
开放的沛文完成签到,获得积分10
11秒前
Jasper应助神采奕奕呀采纳,获得10
12秒前
Alisha完成签到,获得积分10
12秒前
jiayouYi完成签到,获得积分10
15秒前
Cheshire完成签到,获得积分10
15秒前
隐形曼青应助tesla采纳,获得10
17秒前
mary完成签到 ,获得积分10
19秒前
美满的泥猴桃完成签到,获得积分10
20秒前
20秒前
怡然雨雪完成签到,获得积分10
20秒前
Mr咸蛋黄完成签到,获得积分10
21秒前
渡劫完成签到,获得积分10
21秒前
铂铑钯钌完成签到,获得积分10
21秒前
的地方法规完成签到,获得积分10
21秒前
俏皮的荔枝完成签到,获得积分10
21秒前
揽茝完成签到 ,获得积分10
22秒前
无限毛豆完成签到 ,获得积分10
23秒前
咕咕完成签到,获得积分10
23秒前
HCLonely完成签到,获得积分0
24秒前
烂漫的蜡烛完成签到 ,获得积分10
24秒前
67完成签到 ,获得积分10
24秒前
wanglejia完成签到,获得积分10
25秒前
无为完成签到,获得积分10
25秒前
仿生人完成签到,获得积分10
26秒前
汉堡包应助yyyyy采纳,获得10
26秒前
神采奕奕呀完成签到,获得积分10
26秒前
zzuwxj完成签到,获得积分10
27秒前
Loststar完成签到,获得积分10
28秒前
深情安青应助可露丽采纳,获得10
28秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集(1953—2003) 700
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811789
求助须知:如何正确求助?哪些是违规求助? 3356092
关于积分的说明 10379425
捐赠科研通 3073158
什么是DOI,文献DOI怎么找? 1688205
邀请新用户注册赠送积分活动 811866
科研通“疑难数据库(出版商)”最低求助积分说明 766893