Korteweg–de Vries方程
转化(遗传学)
松驰对
组分(热力学)
数学物理
数学
应用数学
达布积分
纯数学
域代数上的
物理
非线性系统
可积系统
化学
几何学
热力学
量子力学
基因
生物化学
曲率
作者
Hai-Qiang Zhang,Bo Tian,Tao Xu,He Li,Cheng Zhang,Huan Zhang
标识
DOI:10.1088/1751-8113/41/35/355210
摘要
In this paper, through generalizing the 2 × 2 matrix Ablowitz–Kaup–Newell–Segur linear eigenvalue problem to the 2N × 2N case, a new Lax pair associated with the multi-component modified Korteweg–de Vries equations is derived in the form of block matrices. Furthermore, the Darboux transformation is applied to this integrable multi-component system, and the n-times iterative potential formula is presented by applying the Darboux transformation successively. This formula enables us to construct a series of explicit solutions of multi-component modified Korteweg–de Vries equations. In illustration, starting from the zero background, we construct the multi-soliton solutions by performing the symbolic computation.
科研通智能强力驱动
Strongly Powered by AbleSci AI