Artificial intelligence for cervical cancer screening: Scoping review, 2009–2022

人工智能 支持向量机 机器学习 医学 阿达布思 宫颈癌 随机森林 朴素贝叶斯分类器 卷积神经网络 多层感知器 计算机科学 模式识别(心理学) 癌症 人工神经网络 内科学
作者
Hernán Darío Vargas‐Cardona,M. Rodríguez‐López,Marcela Arrivillaga,Carlos Vergara‐Sanchez,Juan Pablo García-Cifuentes,Paula C. Bermúdez,Andrés Jaramillo-Botero
出处
期刊:International journal of gynaecology and obstetrics [Elsevier BV]
卷期号:165 (2): 566-578 被引量:21
标识
DOI:10.1002/ijgo.15179
摘要

Abstract Background The intersection of artificial intelligence (AI) with cancer research is increasing, and many of the advances have focused on the analysis of cancer images. Objectives To describe and synthesize the literature on the diagnostic accuracy of AI in early imaging diagnosis of cervical cancer following Preferred Reporting Items for Systematic Reviews and Meta‐Analyses Extension for Scoping Reviews (PRISMA‐ScR). Search Strategy Arksey and O'Malley methodology was used and PubMed, Scopus, and Google Scholar databases were searched using a combination of English and Spanish keywords. Selection Criteria Identified titles and abstracts were screened to select original reports and cross‐checked for overlap of cases. Data Collection and Analysis A descriptive summary was organized by the AI algorithm used, total of images analyzed, data source, clinical comparison criteria, and diagnosis performance. Main Results We identified 32 studies published between 2009 and 2022. The primary sources of images were digital colposcopy, cervicography, and mobile devices. The machine learning/deep learning (DL) algorithms applied in the articles included support vector machine (SVM), random forest classifier, k‐nearest neighbors, multilayer perceptron, C4.5, Naïve Bayes, AdaBoost, XGboots, conditional random fields, Bayes classifier, convolutional neural network (CNN; and variations), ResNet (several versions), YOLO+EfficientNetB0, and visual geometry group (VGG; several versions). SVM and DL methods (CNN, ResNet, VGG) showed the best diagnostic performances, with an accuracy of over 97%. Conclusion We concluded that the use of AI for cervical cancer screening has increased over the years, and some results (mainly from DL) are very promising. However, further research is necessary to validate these findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Super张完成签到,获得积分20
刚刚
威武的翠安完成签到 ,获得积分10
2秒前
zyyyy完成签到,获得积分10
2秒前
惠小之发布了新的文献求助10
2秒前
李扒皮完成签到,获得积分10
3秒前
QTQ完成签到,获得积分10
4秒前
Super张发布了新的文献求助10
4秒前
Yonica完成签到,获得积分10
4秒前
Mm完成签到,获得积分10
5秒前
SYLH应助天才嗷大宝采纳,获得30
7秒前
9秒前
惠小之完成签到,获得积分10
9秒前
10秒前
Anqi完成签到 ,获得积分10
11秒前
大胆博完成签到,获得积分10
11秒前
12秒前
13秒前
善学以致用应助严三笑采纳,获得10
13秒前
完美世界应助霸气绿草采纳,获得10
14秒前
wyh完成签到 ,获得积分10
15秒前
舒心的绿草完成签到,获得积分10
15秒前
无花果应助健康的访梦采纳,获得10
16秒前
yang完成签到,获得积分10
16秒前
16秒前
苞米公主发布了新的文献求助10
17秒前
17秒前
陈鹏发布了新的文献求助10
17秒前
18秒前
23秒前
wangs发布了新的文献求助10
23秒前
彬彬发布了新的文献求助10
24秒前
满意的初南完成签到,获得积分10
25秒前
飞翔的医学生完成签到,获得积分10
25秒前
25秒前
27秒前
爱听歌的蘑菇完成签到,获得积分10
27秒前
29秒前
平奥辉发布了新的文献求助10
30秒前
天天向上完成签到,获得积分20
31秒前
Aggie发布了新的文献求助10
32秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4046771
求助须知:如何正确求助?哪些是违规求助? 3584585
关于积分的说明 11392603
捐赠科研通 3312077
什么是DOI,文献DOI怎么找? 1822396
邀请新用户注册赠送积分活动 894459
科研通“疑难数据库(出版商)”最低求助积分说明 816275