Automated Penetration Testing using Large Language Models

计算机科学 渗透(战争) 自然语言处理 工程类 运筹学
作者
Dhananjai Sharma Shria Verma
出处
期刊:International journal of science and research [International Journal of Science and Research]
卷期号:13 (4): 1826-1831
标识
DOI:10.21275/sr24427043741
摘要

In the rapidly evolving field of cybersecurity, automated tools have become indispensable for identifying vulnerabilities and enhancing network security. Traditional penetration testing methods, while effective, often require extensive human expertise and can be time-consuming. This research introduces a groundbreaking system that integrates Large Language Models (LLMs), specifically the OpenHermes-2.5-Mistral-7B model, with automated penetration testing to revolutionize the security assessment process. This model automates the execution of penetration tests and provides AI-driven guidance, facilitating more efficient and comprehensive vulnerability assessments. Designed to operate across various environments including Kali Linux, Windows, and MacOS, and leveraging Python for scripting and automation, the model interprets context and user input to execute relevant security commands and adapt its testing strategies accordingly. This paper details the architecture, implementation, and operational capabilities of the model, demonstrating its effectiveness in simulating attack scenarios and identifying system vulnerabilities. Initial testing indicates that the model significantly reduces the time required for penetration testing while maintaining high standards of accuracy and thoroughness. The integration of LLMs not only enhances the automation of repetitive tasks but also introduces a new paradigm in adaptive testing based on real-time data analysis and decision-making. This study underscores the potential of LLMs to transform cybersecurity practices, setting a benchmark for future developments in automated security technologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助xiaolanou采纳,获得30
2秒前
充电宝应助abcd_1067采纳,获得10
2秒前
许鑫蓁完成签到,获得积分10
4秒前
4秒前
研友_VZG7GZ应助Steplan采纳,获得10
5秒前
研友_8Y2DXL完成签到,获得积分10
5秒前
晶晶发布了新的文献求助20
6秒前
Vizz发布了新的文献求助10
6秒前
一蓑烟雨完成签到,获得积分10
6秒前
汉堡包应助LLL采纳,获得10
6秒前
xun关闭了xun文献求助
7秒前
田様应助容容容采纳,获得10
7秒前
8秒前
耍酷翠安完成签到,获得积分20
9秒前
大大鱼发布了新的文献求助10
9秒前
陈橙发布了新的文献求助10
9秒前
9秒前
Steplan完成签到,获得积分10
10秒前
恰饭睡觉完成签到,获得积分10
11秒前
表哥yd完成签到 ,获得积分10
11秒前
12秒前
陈佳完成签到,获得积分10
14秒前
abcd_1067发布了新的文献求助10
14秒前
xiaolanou发布了新的文献求助30
14秒前
14秒前
16秒前
领导范儿应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得30
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
step发布了新的文献求助10
19秒前
19秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208817
求助须知:如何正确求助?哪些是违规求助? 4386099
关于积分的说明 13660012
捐赠科研通 4245182
什么是DOI,文献DOI怎么找? 2329154
邀请新用户注册赠送积分活动 1326960
关于科研通互助平台的介绍 1279228