Tailoring the Electrochemical Deposition of Zn by Tuning the Viscosity of the Liquid Electrolyte

沉积(地质) 材料科学 电解质 过电位 化学工程 电化学 电极 粘度 复合材料 化学 沉积物 生物 工程类 物理化学 古生物学
作者
Yifan Cui,Yi He,Wentao Yu,Wenxu Shang,Jianwen Yu,Peng Tan
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (2): 3028-3036 被引量:12
标识
DOI:10.1021/acsami.2c19965
摘要

The issues during Zn deposition in rechargeable Zn-based batteries greatly hinder cycling stability. In this work, a simple and inexpensive approach to tailor the Zn electrodeposition is proposed by tuning the viscosity of the liquid electrolyte (LE). First, the growth mechanisms of Zn deposition under different electrolyte properties are investigated by numerical simulation, from which the bottom deposition tends to fuse with each other when there are more deposition sites, and the mass-transfer coefficient is lower, thus achieving uniform deposition. Besides, the whole process of Zn deposition in charging-discharging cycling is in situ observed by an optical microscope. It is found that the cause of the poor stability in the LE is due to the uneven Zn deposition, resulting in weak bonding between the deposition and the electrode surface, which is also the reason for the formation of dead Zn. In contrast, when an appropriate amount of the polymer is added to the LE to increase the viscosity, an appropriate overpotential can be created, generating more deposition sites. In addition, the viscosity reduces the mass-transfer coefficient, making the distance from the ion to the deposition sites the main controlling factor. The Zn ions are more inclined to move in the direction of electric field lines, which results in a uniform and dense deposition layer. Furthermore, the effectiveness of this method is demonstrated in a Zn-LiFePO4 battery, from which the battery with the modified electrolyte condition still works properly even in the Zn utilization of 100% and shows a capacity retention rate (35%) of nearly twice that in the original LE condition (18%) after 10 cycles. This work provides a theoretical basis for Zn deposition and provides ideas for the future development of high-performance Zn-based batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助小综的fan儿采纳,获得10
刚刚
2秒前
4秒前
无花果应助云上人采纳,获得10
4秒前
爆米花应助11111采纳,获得10
5秒前
情怀应助Huaaaaaz采纳,获得10
5秒前
纯金金发布了新的文献求助10
6秒前
刘老哥6完成签到,获得积分10
8秒前
10秒前
张光光发布了新的文献求助10
10秒前
11秒前
敬敬完成签到,获得积分10
12秒前
13秒前
王旭东完成签到 ,获得积分10
14秒前
无情的宛儿发布了新的文献求助100
14秒前
沈建文发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
jkw发布了新的文献求助30
16秒前
丘比特应助壮观寒荷采纳,获得10
16秒前
木木发布了新的文献求助10
17秒前
云上人发布了新的文献求助10
18秒前
张光光完成签到,获得积分10
19秒前
Drake完成签到,获得积分10
19秒前
11111发布了新的文献求助10
20秒前
21秒前
结实的老虎完成签到,获得积分10
23秒前
23秒前
淡定诗柳完成签到,获得积分10
26秒前
火星上的若颜完成签到,获得积分10
26秒前
27秒前
CipherSage应助太阳地里1911采纳,获得10
29秒前
隐形曼青应助KK采纳,获得10
29秒前
赘婿应助11111采纳,获得10
30秒前
勤劳怜寒发布了新的文献求助20
31秒前
辛勤的刺猬完成签到 ,获得积分10
32秒前
泡沫发布了新的文献求助10
32秒前
学习的苹果完成签到,获得积分10
32秒前
乐乐应助搞怪小兔子采纳,获得10
33秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812565
求助须知:如何正确求助?哪些是违规求助? 3357082
关于积分的说明 10385222
捐赠科研通 3074312
什么是DOI,文献DOI怎么找? 1688689
邀请新用户注册赠送积分活动 812320
科研通“疑难数据库(出版商)”最低求助积分说明 766986