VFM-Det: Towards High-Performance Vehicle Detection via Large Foundation Models

基础(证据) 计算机科学 政治学 法学
作者
Wentao Wu,Fanghua Hong,Xiao Wang,Chenglong Li,Jin Tang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2408.13031
摘要

Existing vehicle detectors are usually obtained by training a typical detector (e.g., YOLO, RCNN, DETR series) on vehicle images based on a pre-trained backbone (e.g., ResNet, ViT). Some researchers also exploit and enhance the detection performance using pre-trained large foundation models. However, we think these detectors may only get sub-optimal results because the large models they use are not specifically designed for vehicles. In addition, their results heavily rely on visual features, and seldom of they consider the alignment between the vehicle's semantic information and visual representations. In this work, we propose a new vehicle detection paradigm based on a pre-trained foundation vehicle model (VehicleMAE) and a large language model (T5), termed VFM-Det. It follows the region proposal-based detection framework and the features of each proposal can be enhanced using VehicleMAE. More importantly, we propose a new VAtt2Vec module that predicts the vehicle semantic attributes of these proposals and transforms them into feature vectors to enhance the vision features via contrastive learning. Extensive experiments on three vehicle detection benchmark datasets thoroughly proved the effectiveness of our vehicle detector. Specifically, our model improves the baseline approach by $+5.1\%$, $+6.2\%$ on the $AP_{0.5}$, $AP_{0.75}$ metrics, respectively, on the Cityscapes dataset.The source code of this work will be released at https://github.com/Event-AHU/VFM-Det.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助奶糖采纳,获得10
1秒前
xiuwen完成签到,获得积分10
2秒前
文静紫霜完成签到 ,获得积分10
2秒前
4秒前
5秒前
爆米花应助yanting采纳,获得10
6秒前
7秒前
9秒前
9秒前
青椒肉丝完成签到,获得积分10
10秒前
好好完成签到,获得积分10
11秒前
11秒前
可爱的函函应助刘明坤采纳,获得10
12秒前
科研通AI5应助尹佳怡采纳,获得10
13秒前
62ccc发布了新的文献求助10
13秒前
科研2121完成签到,获得积分10
13秒前
等风来、云飞扬完成签到,获得积分10
14秒前
奶糖发布了新的文献求助10
15秒前
整齐乐荷发布了新的文献求助10
15秒前
16秒前
kiki完成签到 ,获得积分10
18秒前
18秒前
研友_VZG7GZ应助嘻嘻采纳,获得10
18秒前
小马甲应助嘻嘻采纳,获得10
19秒前
19秒前
20秒前
20秒前
Benchen完成签到 ,获得积分10
22秒前
23秒前
乔垣结衣应助纯金金采纳,获得20
24秒前
灰色白面鸮完成签到,获得积分10
24秒前
闪闪翎发布了新的文献求助10
24秒前
Su发布了新的文献求助10
24秒前
25秒前
NexusExplorer应助WROBTY采纳,获得10
25秒前
科研通AI5应助张emo采纳,获得10
25秒前
27秒前
27秒前
realer发布了新的文献求助10
27秒前
火星上的羽毛完成签到,获得积分10
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812481
求助须知:如何正确求助?哪些是违规求助? 3356992
关于积分的说明 10384882
捐赠科研通 3074184
什么是DOI,文献DOI怎么找? 1688647
邀请新用户注册赠送积分活动 812247
科研通“疑难数据库(出版商)”最低求助积分说明 766960