Prediction of soil depth using a soil-landscape regression model: a case study on forest soils in southern Taiwan.

数字土壤制图 仰角(弹道) 土壤水分 土壤图 环境科学 土壤科学 土壤测量 数字高程模型 多元统计 水文学(农业) 回归分析 土壤系列 线性回归 土层 地质学 自然地理学 土壤分类 地理 数学 统计 岩土工程 遥感 几何学
作者
Chen‐Chi Tsai,Zueng‐Sang Chen,Chin-Tzer Duh,Fu-Wen Horng
出处
期刊:PubMed 卷期号:25 (1): 34-9 被引量:40
链接
标识
摘要

Techniques for conventional forest soil surveys in Taiwan need to be further developed in order to save time and money. Although some soil-landscape regression models have been developed to describe and predict soil properties and depths, they have seldom been studied in Taiwan. This study establishes linear soil-landscape regression models related to soil depths and landscape factors found in the forest soils of southern Taiwan. These models were evaluated by validating the models according to their mean errors and root mean square errors. The study was carried out at the 60,000 ha Chishan Forest Working Circle. About 310 soil pedons were collected. The landscape factors included elevation, slope, aspect, and surface stone contents. Sixty percent of the total field samples were used to establish the soil-landscape regression models, and forty % were used for validation. The sampling strategy indicated that each representative pedon covers an area of about 147 ha. The number of samples was appropriate considering the available time and budget. The single variate and/or multivariate linear regression soil-landscape models were successfully established. Those models revealed significant inter-relations among the soil depths of the B and B+BC horizons, solum thickness, and landscape factors, including slope and surface stone contents (p < 0.003). The mean errors in the validation of the soil-landscape model were low and acceptable for this case study. In addition, the slope data derived from the DEM (digital elevation model) database in this case study were used to predict the soil depths of the B, B+BC horizons and the solum thickness without carrying out a field survey. Surface stone should be collected in a field soil survey to increase the precision of soil depth prediction of the B and B+BC horizons, and the solum thickness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平安喜乐完成签到,获得积分10
刚刚
Orange应助idannn采纳,获得10
2秒前
XHW发布了新的文献求助10
2秒前
dark_zone发布了新的文献求助10
3秒前
3秒前
4秒前
Alex20000718发布了新的文献求助30
4秒前
平安喜乐发布了新的文献求助10
4秒前
小巧的灵竹完成签到,获得积分10
4秒前
4秒前
sunny完成签到 ,获得积分10
4秒前
歪歪发布了新的文献求助10
5秒前
zw关注了科研通微信公众号
5秒前
6秒前
Joshua发布了新的文献求助10
6秒前
小二郎应助123123采纳,获得10
7秒前
完美世界应助123123采纳,获得10
7秒前
科研通AI6应助123123采纳,获得10
7秒前
浮游应助123123采纳,获得10
7秒前
浮游应助123123采纳,获得10
7秒前
浮游应助123123采纳,获得10
7秒前
浮游应助123123采纳,获得10
7秒前
Pluto0o应助123123采纳,获得10
7秒前
浮游应助123123采纳,获得10
7秒前
星辰大海应助123123采纳,获得10
7秒前
陈皮有远志完成签到,获得积分10
8秒前
情怀应助小巧初柔采纳,获得10
8秒前
JamesPei应助高雅和恬静采纳,获得10
9秒前
9秒前
饭神仙鱼发布了新的文献求助100
9秒前
10秒前
sh131完成签到,获得积分10
11秒前
12秒前
lili发布了新的文献求助10
12秒前
12秒前
完美世界应助自信有魅力采纳,获得10
14秒前
科研通AI6应助Ash采纳,获得10
15秒前
15秒前
15秒前
sunwei发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436430
求助须知:如何正确求助?哪些是违规求助? 4548467
关于积分的说明 14214403
捐赠科研通 4468775
什么是DOI,文献DOI怎么找? 2449157
邀请新用户注册赠送积分活动 1440092
关于科研通互助平台的介绍 1416668