亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using models to improve optimizers for variational quantum algorithms

算法 量子机器学习 量子 量子位元
作者
Kevin J. Sung,Yao Jiahao,Matthew P. Harrigan,Nicholas C. Rubin,Zhang Jiang,Lin Lin,Ryan Babbush,Jarrod R. McClean,Kevin J. Sung,Yao Jiahao,Matthew P. Harrigan,Nicholas C. Rubin,Zhang Jiang,Lin Lin,Ryan Babbush,Jarrod R. McClean
出处
期刊:Quantum science and technology [IOP Publishing]
卷期号:5 (4): 044008-044008 被引量:62
标识
DOI:10.1088/2058-9565/abb6d9
摘要

Abstract Variational quantum algorithms are a leading candidate for early applications on noisy intermediate-scale quantum computers. These algorithms depend on a classical optimization outer-loop that minimizes some function of a parameterized quantum circuit. In practice, finite sampling error and gate errors make this a stochastic optimization with unique challenges that must be addressed at the level of the optimizer. The sharp trade-off between precision and sampling time in conjunction with experimental constraints necessitates the development of new optimization strategies to minimize overall wall clock time in this setting. In this work, we introduce two optimization methods and numerically compare their performance with common methods in use today. The methods are surrogate model-based algorithms designed to improve reuse of collected data. They do so by utilizing a least-squares quadratic fit of sampled function values within a moving trusted region to estimate the gradient or a policy gradient. To make fair comparisons between optimization methods, we develop experimentally relevant cost models designed to balance efficiency in testing and accuracy with respect to cloud quantum computing systems. The results here underscore the need to both use relevant cost models and optimize hyperparameters of existing optimization methods for competitive performance. The methods introduced here have several practical advantages in realistic experimental settings, and we have used one of them successfully in a separately published experiment on Google’s Sycamore device.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
16秒前
elliotzzz应助科研通管家采纳,获得10
16秒前
andrele发布了新的文献求助10
22秒前
英俊的铭应助ceeray23采纳,获得20
24秒前
雍远望发布了新的文献求助10
42秒前
48秒前
木子发布了新的文献求助10
52秒前
桐桐应助海底两万里采纳,获得10
53秒前
wop111应助ceeray23采纳,获得20
1分钟前
1分钟前
1分钟前
1分钟前
CipherSage应助爱听歌笑寒采纳,获得10
1分钟前
poser完成签到,获得积分10
1分钟前
1分钟前
Duan完成签到 ,获得积分10
2分钟前
lihongjie发布了新的文献求助10
2分钟前
sino-ft完成签到,获得积分10
2分钟前
2分钟前
上官若男应助科研通管家采纳,获得10
2分钟前
pearson应助udbjn123采纳,获得10
2分钟前
pearson应助辰辰采纳,获得10
2分钟前
Owen应助辰辰采纳,获得10
2分钟前
2分钟前
2分钟前
dcy完成签到,获得积分10
2分钟前
udbjn123发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
霖铃发布了新的文献求助10
3分钟前
浮游应助白白采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
辰辰发布了新的文献求助10
3分钟前
霖铃完成签到,获得积分10
3分钟前
Oculus完成签到 ,获得积分10
3分钟前
斯文败类应助辰辰采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438350
求助须知:如何正确求助?哪些是违规求助? 4549602
关于积分的说明 14220693
捐赠科研通 4470297
什么是DOI,文献DOI怎么找? 2449804
邀请新用户注册赠送积分活动 1440768
关于科研通互助平台的介绍 1417097