亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of effluent ammonia nitrogen in wastewater treatment plant based on self-organizing hybrid neural network

流出物 废水 污水处理 人工神经网络 氮气 废水回用 环境科学 化学 制浆造纸工业 生化工程 环境工程 计算机科学 人工智能 工程类 有机化学
作者
Jihang Wang,Yong Guo,Shuo Peng,Yao Wang,Wenhao Zhang,Xin Zhou,Lifang Jiang,Bo Lai
出处
期刊:Journal of water process engineering [Elsevier BV]
卷期号:59: 104930-104930 被引量:2
标识
DOI:10.1016/j.jwpe.2024.104930
摘要

Timely and accurate prediction of key indicators of sewage is the focus of intelligent sewage treatment research. But traditional deep learning model performs unsteadily in the case of large fluctuations of inlet water quality. Self-organizing map (SOM) is a typical unsupervised learning algorithm, which can automatically classify the input patterns according to its learning rules. Herein, a self- organizing classification integrated model based on SOM algorithm was established to predict effluent ammonia nitrogen (NH3−N) of a wastewater treatment plant in China. Influent chemical oxygen demand (COD), influent total phosphorus (TP), influent NH3-N, influent total nitrogen (TN) and pH were selected as the input indicators. Firstly, SOM algorithm is used to divide the original data set into several different categories according to their characteristics. Secondly, the different categories are used to train different Radial Basis Function models (RBF). Finally, the input data is sorted through SOM to find the corresponding unit (RBF), depending on what to predict effluent NH3-N. After evaluation, the results show that the proposed integrated model accurately predicts the value of effluent NH3-N, with the values of root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) are 0.06, 0.05, 2.19, respectively. Moreover, the integrated model also outperforms single RBF, with 55.61 % lower RMSE, 48.66 % lower MAE, and 48.31.90 % lower MAPE. This study is helpful for the development of intelligent sewage treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
23秒前
36秒前
草莓冰淇淋2333完成签到,获得积分20
1分钟前
1分钟前
na完成签到,获得积分10
1分钟前
小草应助科研通管家采纳,获得20
1分钟前
小草应助科研通管家采纳,获得40
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
钱邦国完成签到 ,获得积分10
1分钟前
1分钟前
zcg发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
英姑应助xyliu采纳,获得10
2分钟前
2分钟前
Friday发布了新的文献求助10
2分钟前
Friday完成签到,获得积分10
2分钟前
xyliu完成签到,获得积分10
2分钟前
2分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
完美世界应助longer采纳,获得10
3分钟前
4分钟前
longer发布了新的文献求助10
4分钟前
4分钟前
4分钟前
所所应助科研通管家采纳,获得10
5分钟前
小蘑菇应助科研通管家采纳,获得10
5分钟前
思源应助科研通管家采纳,获得10
5分钟前
嘿嘿应助科研通管家采纳,获得10
5分钟前
嘿嘿应助科研通管家采纳,获得10
5分钟前
李健应助科研通管家采纳,获得10
5分钟前
smz完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
英姑应助小向采纳,获得10
6分钟前
6分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4060987
求助须知:如何正确求助?哪些是违规求助? 3599531
关于积分的说明 11432220
捐赠科研通 3323567
什么是DOI,文献DOI怎么找? 1827320
邀请新用户注册赠送积分活动 897914
科研通“疑难数据库(出版商)”最低求助积分说明 818699