亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Watch Me Improve—Algorithm Aversion and Demonstrating the Ability to Learn

判断 任务(项目管理) 激励 人工智能 计算机科学 损失厌恶 对策 现象 机器学习 认知心理学 心理学 工程类 管理 经济 微观经济学 航空航天工程 法学 物理 量子力学 政治学
作者
Benedikt Berger,Martin Adam,Alexander Rühr,Alexander Benlian
出处
期刊:Business & Information Systems Engineering [Springer Nature]
卷期号:63 (1): 55-68 被引量:136
标识
DOI:10.1007/s12599-020-00678-5
摘要

Abstract Owing to advancements in artificial intelligence (AI) and specifically in machine learning, information technology (IT) systems can support humans in an increasing number of tasks. Yet, previous research indicates that people often prefer human support to support by an IT system, even if the latter provides superior performance – a phenomenon called algorithm aversion. A possible cause of algorithm aversion put forward in literature is that users lose trust in IT systems they become familiar with and perceive to err, for example, making forecasts that turn out to deviate from the actual value. Therefore, this paper evaluates the effectiveness of demonstrating an AI-based system’s ability to learn as a potential countermeasure against algorithm aversion in an incentive-compatible online experiment. The experiment reveals how the nature of an erring advisor (i.e., human vs. algorithmic), its familiarity to the user (i.e., unfamiliar vs. familiar), and its ability to learn (i.e., non-learning vs. learning) influence a decision maker’s reliance on the advisor’s judgement for an objective and non-personal decision task. The results reveal no difference in the reliance on unfamiliar human and algorithmic advisors, but differences in the reliance on familiar human and algorithmic advisors that err. Demonstrating an advisor’s ability to learn, however, offsets the effect of familiarity. Therefore, this study contributes to an enhanced understanding of algorithm aversion and is one of the first to examine how users perceive whether an IT system is able to learn. The findings provide theoretical and practical implications for the employment and design of AI-based systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
6秒前
sxmt123456789发布了新的文献求助30
11秒前
47秒前
归海浩阑应助科研通管家采纳,获得20
52秒前
归海浩阑应助科研通管家采纳,获得10
52秒前
归海浩阑应助科研通管家采纳,获得20
52秒前
58秒前
科研通AI5应助要减肥中蓝采纳,获得10
1分钟前
研友_nEWRJ8完成签到,获得积分10
1分钟前
LIFE2020完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
科研通AI5应助要减肥中蓝采纳,获得10
2分钟前
2分钟前
大熊完成签到 ,获得积分10
2分钟前
2分钟前
共享精神应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助50
2分钟前
深情安青应助十分十分佳采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
猪猪侠发布了新的文献求助10
3分钟前
汉堡包应助猪猪侠采纳,获得10
3分钟前
满意的伊完成签到,获得积分10
3分钟前
4分钟前
lovelife完成签到,获得积分10
4分钟前
4分钟前
所所应助科研通管家采纳,获得10
4分钟前
4分钟前
梅思寒完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
yinhe028发布了新的文献求助20
5分钟前
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5065489
求助须知:如何正确求助?哪些是违规求助? 4288086
关于积分的说明 13359624
捐赠科研通 4106843
什么是DOI,文献DOI怎么找? 2248884
邀请新用户注册赠送积分活动 1254395
关于科研通互助平台的介绍 1186135