亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Li-Ion Batteries Operating from Room Temperature to 150 °C

电解质 材料科学 热稳定性 陶瓷 储能 电池(电) 化学工程 工艺工程 工程物理 纳米技术 复合材料 工程类 化学 热力学 功率(物理) 物理 电极 物理化学
作者
Marco‐Tulio F. Rodrigues,Kaushik Kalaga,Hemtej Gullapalli,Ganguli Babu,Leela Mohana Reddy Arava,Pulickel M. Ajayan
出处
期刊:Meeting abstracts 卷期号:MA2016-03 (2): 694-694 被引量:1
标识
DOI:10.1149/ma2016-03/2/694
摘要

Commercially available Li-ion batteries have limited thermal stabilities, with safe operation range limited to about 80 o C. Nevertheless, several industries, as aerospace, oil & gas, military and biomedical, require operations to be performed at extreme environments, with peak temperatures reaching 120-150 o C and above. The market for specialty batteries is currently dominated by primary cells, raising safety concerns, requiring extensive maintenance and limiting the power output of the energy storage units. The development of a Li-ion battery that fulfills the safety and cycle life requirements for these applications is a challenging scientific problem and a great market opportunity. The ubiquity of organic solvents in the vast majority of Li-ion cells greatly limits the temperature range, due to the volatility of the electrolyte. The use of ionic liquids has been proposed as an alternative to extend the thermal stability of batteries, but there are no thin film separators capable of offering the required mechanical stability at high temperatures. Similar problems are faced by polymer electrolytes, where volume change and thermal aging decrease cycle life of devices upon long exposure to high temperatures. While solid state ceramic electrolytes possess the desired stability at elevated temperatures, their poor interfacial and wetting properties tend to limit their use to thin film configurations. None of the electrolyte systems currently used meets the requirements for proper operation of large scale devices up to very high temperatures. To tackle this issue we developed a gel-like composite electrolyte containing hexagonal boron nitride (BN) and a solution of LiTFSI in the ionic liquid 1-methyl-1-propylpiperidinium bis(trifluormethane)sulfonimide (PP13). The BN acts as a binder, providing mechanical sustentation even at elevated temperatures, while the ionic liquid offer a medium for ion transport. The ionic conductivities ranged from 0.2 mS/cm at room temperature to 4 mS/cm at 150 o C, with an average Li-ion transference number of 0.10. The electrolyte held remarkable electrochemical stability even at 120 o C, presenting an anodic stability of 5.5 V and a reversible lithium plating/stripping behavior. Tests on a half-cell configuration using Lithium Titanate (LTO) showed negligible capacity fade for testing periods over a month at 120 o C, with high coulombic efficiencies attained. The accelerated lithiation kinetics at high temperatures allowed operation even at a high 3C rate, with great capacity retention even for 600 cycles. The half-cells were able to provide stable performance even at 150 o C, showing the superb electrochemical and thermal stability of the electrolyte system. The cells were still functional at room temperature, providing 60% of the full capacity, showing that our electrolyte system presents a record upper temperature limit for a Li-ion cell that can also operate at 25 o C. Preliminary tests on a full-cell configuration at 120 o C using LTO and Li 1+x Mn 2 O 4 yielded good cyclic stability, with a capacity of 70 mAh/g and a voltage output of 2.2 V. The BN-PP13-based composite showed exciting and so far unmatched performance even at highly extreme conditions. Nevertheless, the development of a proper electrolyte system to allow high temperature operation of Li-ion batteries is just the first step of many. The level of performance required for commercial applications will only be achieved with optimization of all device components, including electrode binders and cell packaging.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
16秒前
Splaink完成签到 ,获得积分10
17秒前
UPUP0707发布了新的文献求助10
19秒前
科研小白发布了新的文献求助10
21秒前
27秒前
风趣的靖雁完成签到 ,获得积分10
30秒前
我是老大应助科研小白采纳,获得10
30秒前
SciGPT应助科研小白采纳,获得10
30秒前
大模型应助科研小白采纳,获得10
30秒前
充电宝应助科研通管家采纳,获得10
31秒前
共享精神应助科研通管家采纳,获得10
31秒前
叶梓轩完成签到 ,获得积分10
53秒前
小蘑菇应助xun采纳,获得10
1分钟前
1分钟前
厚朴完成签到,获得积分10
1分钟前
1分钟前
xun完成签到,获得积分10
1分钟前
1分钟前
xun发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
科研小白发布了新的文献求助10
1分钟前
1分钟前
wawaaaah完成签到 ,获得积分10
1分钟前
1分钟前
Qintt完成签到 ,获得积分10
1分钟前
1分钟前
科研科研发布了新的文献求助10
1分钟前
旺仔同学完成签到,获得积分10
1分钟前
2分钟前
2分钟前
Kirito应助发的风格采纳,获得30
2分钟前
2分钟前
2分钟前
大模型应助丰富的青梦采纳,获得10
2分钟前
漂亮夏兰完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4047839
求助须知:如何正确求助?哪些是违规求助? 3585654
关于积分的说明 11395200
捐赠科研通 3312670
什么是DOI,文献DOI怎么找? 1822649
邀请新用户注册赠送积分活动 894580
科研通“疑难数据库(出版商)”最低求助积分说明 816423