Sequential sampling approach to energy‐based multi‐objective design optimization of steel frames with correlated random parameters

数学优化 最优化问题 多目标优化 稳健性(进化) 采样(信号处理) 数学 概率逻辑 非线性系统 高斯过程 高斯分布 算法 计算机科学 生物化学 化学 统计 物理 滤波器(信号处理) 量子力学 计算机视觉 基因
作者
Bach Do,Makoto Ohsaki
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
卷期号:51 (3): 588-611 被引量:9
标识
DOI:10.1002/eqe.3581
摘要

Abstract This work presents a novel sequential sampling approach to the multi‐objective reliability‐based design optimization of moment‐resisting steel frames subjected to earthquake excitation. The optimization problem is formulated with two objective functions, namely, the total mass and the energy dissipated by beam members of the frame, and subject to uncorrelated probabilistic constraints on dynamic responses under the effects of correlated random parameters of floor masses, external loads, and material properties. The dynamic responses for a small number of designs are found by nonlinear response history analysis and further approximated by Gaussian process (GP) models to mitigate the computational burden during the optimization process. Approximate solutions sorted among existing candidate solutions are updated after each optimization iteration using discrete random local and global searches. The GP models are also refined after each optimization iteration by specifying new sampling points that lie on the Pareto front of a bi‐objective deterministic maximization problem formulated for the improvement in the current approximate solutions and the feasibility of the new sampling points. As demonstrated in a test problem, the new sampling points tend to distribute in the neighborhood of the exact solutions, thereby underpinning a quick termination as well as the robustness of the proposed method. Optimization results from the test problem and a design example show that good approximate solutions are always obtained as the solution quality converges.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助sam采纳,获得10
刚刚
小宝贝发布了新的文献求助10
1秒前
浮游应助科研通管家采纳,获得30
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
ephore应助科研通管家采纳,获得50
3秒前
小青椒应助科研通管家采纳,获得150
3秒前
科目三应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得20
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
Ray完成签到,获得积分0
4秒前
4秒前
汉堡包应助嘴角上扬采纳,获得10
4秒前
虚拟的以南完成签到,获得积分10
4秒前
Rec完成签到 ,获得积分10
7秒前
Aruo发布了新的文献求助10
9秒前
于yu完成签到 ,获得积分10
11秒前
alex12259完成签到 ,获得积分10
12秒前
12秒前
12秒前
知名不具完成签到 ,获得积分10
12秒前
13秒前
Ghiocel发布了新的文献求助30
13秒前
GONG完成签到,获得积分20
13秒前
852应助纸速度采纳,获得10
14秒前
科研通AI2S应助翁雁丝采纳,获得10
14秒前
摆哥完成签到,获得积分10
15秒前
桐桐应助小樱颖子采纳,获得10
15秒前
科研通AI6应助小宝贝采纳,获得10
16秒前
wanci应助ZHOUZHOU采纳,获得30
17秒前
wuhao完成签到,获得积分10
18秒前
hahhahahh发布了新的文献求助10
18秒前
123完成签到,获得积分10
18秒前
许樟林发布了新的文献求助10
18秒前
sansan完成签到 ,获得积分10
19秒前
小天发布了新的文献求助10
19秒前
Aruo完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5060533
求助须知:如何正确求助?哪些是违规求助? 4284746
关于积分的说明 13352610
捐赠科研通 4102586
什么是DOI,文献DOI怎么找? 2246170
邀请新用户注册赠送积分活动 1251909
关于科研通互助平台的介绍 1182637