A multi-granularity hierarchical network for long- and short-term forecasting on multivariate time series data

粒度 多元统计 期限(时间) 系列(地层学) 计算机科学 时间序列 数据挖掘 序列(生物学) 算法 人工智能 机器学习 生物 遗传学 古生物学 物理 量子力学 操作系统
作者
Hong Yu,Z Wang,Yongfang Xie,Guoyin Wang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:157: 111537-111537 被引量:10
标识
DOI:10.1016/j.asoc.2024.111537
摘要

Multivariate time series forecasting is a significant research problem in many fields such as economics, finance and transportation, where simultaneous long- and short-term forecasting is required. However, current techniques are typically limited to a single short-term or a long-term forecast. To address the limitation, a novel multi-granularity hierarchical network, GNet-LS, is proposed for long- and short-term forecasting on multivariate time series data, which takes into account the separate role of internal correlation and external relationship. First, the original time series sequence is divided into multiple granular sequences based on downsampling, to reduce error accumulation caused by long-term prediction. In order to discover the external relationships between variables, the CNN module slides over the sequence of variables. The global CNN and local CNN are built to implement periodic and nonperiodic extraction, respectively. Next, a self-attention module is used to model dependencies between the output of local CNN and global CNN. The LSTM networks and attention mechanisms are used to mine internal correlation of the target variable on time series. Then, multiple granular external relationships and internal correlation are obtained in parallel. Finally, external relationships and internal correlation are fused together by splicing and overlay to obtain both long-term and short-term forecasts. The experimental results demonstrate that the proposed GNet-LS outperforms a bunch of compared methods in terms of RSE, CORR, MAE and RMSE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto完成签到,获得积分10
刚刚
萨岸上发布了新的文献求助10
1秒前
Q_Q完成签到,获得积分10
3秒前
机智咖啡豆完成签到 ,获得积分10
3秒前
Connor完成签到,获得积分10
4秒前
单薄店员完成签到,获得积分10
5秒前
8秒前
oneonlycrown完成签到,获得积分10
9秒前
管紫南完成签到,获得积分10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
Akim应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得20
10秒前
正直的念梦完成签到,获得积分10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
大模型应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
健忘草莓发布了新的文献求助10
13秒前
Moonchild完成签到 ,获得积分10
16秒前
领导范儿应助day_on采纳,获得10
17秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4044397
求助须知:如何正确求助?哪些是违规求助? 3582212
关于积分的说明 11385677
捐赠科研通 3309240
什么是DOI,文献DOI怎么找? 1821448
邀请新用户注册赠送积分活动 893719
科研通“疑难数据库(出版商)”最低求助积分说明 815809