Understanding Random Forests: From Theory to Practice

可解释性 随机森林 计算机科学 机器学习 可扩展性 人工智能 过程(计算) 决策树 变量(数学) 数据科学 数据挖掘 数学 数学分析 数据库 操作系统
作者
Gilles Louppe
出处
期刊:Cornell University - arXiv 被引量:31
标识
DOI:10.48550/arxiv.1407.7502
摘要

Data analysis and machine learning have become an integrative part of the modern scientific methodology, offering automated procedures for the prediction of a phenomenon based on past observations, unraveling underlying patterns in data and providing insights about the problem. Yet, caution should avoid using machine learning as a black-box tool, but rather consider it as a methodology, with a rational thought process that is entirely dependent on the problem under study. In particular, the use of algorithms should ideally require a reasonable understanding of their mechanisms, properties and limitations, in order to better apprehend and interpret their results. Accordingly, the goal of this thesis is to provide an in-depth analysis of random forests, consistently calling into question each and every part of the algorithm, in order to shed new light on its learning capabilities, inner workings and interpretability. The first part of this work studies the induction of decision trees and the construction of ensembles of randomized trees, motivating their design and purpose whenever possible. Our contributions follow with an original complexity analysis of random forests, showing their good computational performance and scalability, along with an in-depth discussion of their implementation details, as contributed within Scikit-Learn. In the second part of this work, we analyse and discuss the interpretability of random forests in the eyes of variable importance measures. The core of our contributions rests in the theoretical characterization of the Mean Decrease of Impurity variable importance measure, from which we prove and derive some of its properties in the case of multiway totally randomized trees and in asymptotic conditions. In consequence of this work, our analysis demonstrates that variable importances [...].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
微笑的巧蕊完成签到 ,获得积分10
1秒前
2秒前
闵不悔完成签到,获得积分10
2秒前
3秒前
郭子仪发布了新的文献求助10
3秒前
3秒前
Prillision完成签到,获得积分10
4秒前
xrt发布了新的文献求助30
4秒前
搜集达人应助虚心谷雪采纳,获得200
5秒前
阿光发布了新的文献求助10
5秒前
5秒前
sad发布了新的文献求助10
6秒前
herexin完成签到,获得积分10
7秒前
邹雪儿发布了新的文献求助10
8秒前
HY完成签到,获得积分10
8秒前
lkk发布了新的文献求助10
9秒前
llin发布了新的文献求助10
9秒前
等待的小鸽子完成签到 ,获得积分10
9秒前
herexin发布了新的文献求助30
10秒前
YK完成签到,获得积分10
11秒前
11秒前
面包人发布了新的文献求助10
11秒前
香蕉觅云应助wang采纳,获得10
12秒前
花景铭完成签到,获得积分10
12秒前
科研通AI5应助阿光采纳,获得10
12秒前
12秒前
抗抗发布了新的文献求助10
13秒前
afeiwoo完成签到,获得积分10
14秒前
15秒前
研究生end应助郭子仪采纳,获得10
15秒前
15秒前
15秒前
比奇堡完成签到 ,获得积分10
15秒前
CipherSage应助橘子海采纳,获得10
16秒前
17秒前
letgo发布了新的文献求助10
17秒前
雪白雍完成签到,获得积分10
17秒前
xcc完成签到,获得积分10
17秒前
Lucas应助失眠成协采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
Jean-Jacques Rousseau et Geneve 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5178730
求助须知:如何正确求助?哪些是违规求助? 4366927
关于积分的说明 13596516
捐赠科研通 4217333
什么是DOI,文献DOI怎么找? 2313035
邀请新用户注册赠送积分活动 1311858
关于科研通互助平台的介绍 1260148