Identifying the cargo types of road freight with semi-supervised trajectory semantic enhancement

计算机科学 弹道 人工智能 样品(材料) 稳健性(进化) 数据挖掘 模式识别(心理学) 天文 色谱法 生物化学 基因 物理 化学
作者
Yibo Zhao,Shifen Cheng,Beibei Zhang,Feng Lü
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:38 (3): 432-453 被引量:4
标识
DOI:10.1080/13658816.2023.2288116
摘要

Identifying road freight cargo types is crucial for regional economic interaction and transportation optimization. Existing methods primarily rely on manual labeling and the rule, neither of which can achieve automated semantic enhancement of large-scale road freight trajectories. Consequently, this study proposes a semi-supervised trajectory semantic enhancement method for identifying cargo types based on trajectory feature extraction and point-of-interest (POI) association. The raw trajectories are segmented and enriched with the closest POIs. The sample labeling method with POI semantic enhancement is then proposed using company registration information. Finally, the spatiotemporal and sequential features of labeled freight trips are extracted to build a self-training semi-supervised model for identifying the cargo type of road freight. Experimental studies on real trajectory data demonstrate superior accuracy and robustness compared to existing methods, with accuracy and F1 values reaching 81.4 and 0.77%, respectively. The proposed sample labeling method improves representativeness and universality, increasing accuracy by 7.8–14.4% and F1 value by 8.5–34.5% compared to the rule-based method. The semi-supervised model improves accuracy by 8.9% and F1 value by 29.1% compared to the supervised model when only 10.0% of samples were labeled. This method enables automatic and full-sample cargo type identification in real-world large-scale transportation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
比奇堡艺术家完成签到,获得积分10
刚刚
冰魂应助冯冯采纳,获得20
刚刚
分子筛完成签到,获得积分10
刚刚
fandan完成签到 ,获得积分10
刚刚
哈哈呵完成签到,获得积分10
1秒前
Anchor发布了新的文献求助10
1秒前
小马甲应助果子采纳,获得10
2秒前
文风杰采完成签到,获得积分10
2秒前
3秒前
李健的小迷弟应助dddddd采纳,获得10
3秒前
xly完成签到,获得积分10
3秒前
BaekHyun完成签到,获得积分10
3秒前
荔枝发布了新的文献求助10
3秒前
啊啊啊啊啊啊啊啊啊啊完成签到 ,获得积分10
4秒前
4秒前
言字午完成签到,获得积分10
4秒前
5秒前
wenhaw应助哈哈呵采纳,获得10
5秒前
年少有鱼完成签到,获得积分10
6秒前
乐观的访风完成签到,获得积分10
6秒前
末排差生完成签到,获得积分0
6秒前
XHW完成签到,获得积分10
7秒前
MchemG应助富强民主采纳,获得10
7秒前
7秒前
7秒前
11111发布了新的文献求助10
8秒前
猪猪意完成签到,获得积分10
8秒前
高贵笑柳发布了新的文献求助10
8秒前
沈尔云完成签到,获得积分10
8秒前
9秒前
怡然行天完成签到,获得积分10
9秒前
小太阳完成签到,获得积分10
10秒前
10秒前
Jamesliu完成签到,获得积分10
10秒前
qsx发布了新的文献求助10
11秒前
12秒前
12秒前
David完成签到,获得积分10
12秒前
JordanZhao发布了新的文献求助10
12秒前
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812110
求助须知:如何正确求助?哪些是违规求助? 3356551
关于积分的说明 10382609
捐赠科研通 3073683
什么是DOI,文献DOI怎么找? 1688394
邀请新用户注册赠送积分活动 812128
科研通“疑难数据库(出版商)”最低求助积分说明 766960