Current safeguards, risk mitigation, and transparency measures of large language models against the generation of health disinformation: repeated cross sectional analysis

造谣 透明度(行为) 公共卫生 业务 环境卫生 医学 互联网隐私 计算机安全 政治学 计算机科学 社会化媒体 法学 护理部
作者
Bradley D. Menz,Nicole M. Kuderer,Stephen Bacchi,Natansh D. Modi,Benjamin Chin‐Yee,Tiancheng Hu,Ceara Rickard,Mark Haseloff,Agnès Vitry,Ross A. McKinnon,Ganessan Kichenadasse,Andrew Rowland,Michael J. Sorich,Ashley M. Hopkins
标识
DOI:10.1136/bmj-2023-078538
摘要

Abstract Objectives To evaluate the effectiveness of safeguards to prevent large language models (LLMs) from being misused to generate health disinformation, and to evaluate the transparency of artificial intelligence (AI) developers regarding their risk mitigation processes against observed vulnerabilities. Design Repeated cross sectional analysis. Setting Publicly accessible LLMs. Methods In a repeated cross sectional analysis, four LLMs (via chatbots/assistant interfaces) were evaluated: OpenAI’s GPT-4 (via ChatGPT and Microsoft’s Copilot), Google’s PaLM 2 and newly released Gemini Pro (via Bard), Anthropic’s Claude 2 (via Poe), and Meta’s Llama 2 (via HuggingChat). In September 2023, these LLMs were prompted to generate health disinformation on two topics: sunscreen as a cause of skin cancer and the alkaline diet as a cancer cure. Jailbreaking techniques (ie, attempts to bypass safeguards) were evaluated if required. For LLMs with observed safeguarding vulnerabilities, the processes for reporting outputs of concern were audited. 12 weeks after initial investigations, the disinformation generation capabilities of the LLMs were re-evaluated to assess any subsequent improvements in safeguards. Main outcome measures The main outcome measures were whether safeguards prevented the generation of health disinformation, and the transparency of risk mitigation processes against health disinformation. Results Claude 2 (via Poe) declined 130 prompts submitted across the two study timepoints requesting the generation of content claiming that sunscreen causes skin cancer or that the alkaline diet is a cure for cancer, even with jailbreaking attempts. GPT-4 (via Copilot) initially refused to generate health disinformation, even with jailbreaking attempts—although this was not the case at 12 weeks. In contrast, GPT-4 (via ChatGPT), PaLM 2/Gemini Pro (via Bard), and Llama 2 (via HuggingChat) consistently generated health disinformation blogs. In September 2023 evaluations, these LLMs facilitated the generation of 113 unique cancer disinformation blogs, totalling more than 40 000 words, without requiring jailbreaking attempts. The refusal rate across the evaluation timepoints for these LLMs was only 5% (7 of 150), and as prompted the LLM generated blogs incorporated attention grabbing titles, authentic looking (fake or fictional) references, fabricated testimonials from patients and clinicians, and they targeted diverse demographic groups. Although each LLM evaluated had mechanisms to report observed outputs of concern, the developers did not respond when observations of vulnerabilities were reported. Conclusions This study found that although effective safeguards are feasible to prevent LLMs from being misused to generate health disinformation, they were inconsistently implemented. Furthermore, effective processes for reporting safeguard problems were lacking. Enhanced regulation, transparency, and routine auditing are required to help prevent LLMs from contributing to the mass generation of health disinformation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
仇敌克星完成签到,获得积分10
3秒前
5秒前
你的样子完成签到,获得积分10
5秒前
秋风之墩完成签到,获得积分10
8秒前
8秒前
时代更迭完成签到 ,获得积分10
8秒前
诺亚方舟哇哈哈完成签到 ,获得积分0
12秒前
shiluodeqiou完成签到,获得积分10
12秒前
梅梅子完成签到 ,获得积分10
13秒前
贝贝完成签到 ,获得积分10
14秒前
18秒前
xz发布了新的文献求助10
18秒前
陈M雯完成签到 ,获得积分10
18秒前
胡图图完成签到 ,获得积分10
20秒前
隐形白开水完成签到,获得积分0
21秒前
沐雨汐完成签到,获得积分10
22秒前
bckl888完成签到,获得积分10
22秒前
研友_VZGVzn完成签到,获得积分10
23秒前
盛意完成签到,获得积分10
23秒前
33完成签到,获得积分10
26秒前
小橘子完成签到 ,获得积分10
26秒前
bo完成签到 ,获得积分10
26秒前
乐观海燕完成签到 ,获得积分10
28秒前
典雅雅容完成签到,获得积分10
29秒前
zcydbttj2011完成签到 ,获得积分10
29秒前
对对对完成签到 ,获得积分10
30秒前
chengcheng完成签到,获得积分10
31秒前
Asumita完成签到,获得积分10
33秒前
杨明智完成签到 ,获得积分10
33秒前
年轻千愁完成签到 ,获得积分10
35秒前
li完成签到 ,获得积分10
35秒前
蔡从安完成签到,获得积分20
42秒前
chenying完成签到 ,获得积分0
43秒前
胡图图完成签到 ,获得积分10
44秒前
止戈为武完成签到,获得积分10
44秒前
czj完成签到 ,获得积分0
47秒前
馆长应助科研通管家采纳,获得50
49秒前
馆长应助科研通管家采纳,获得50
49秒前
Owen应助科研通管家采纳,获得10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5188263
求助须知:如何正确求助?哪些是违规求助? 4372580
关于积分的说明 13613630
捐赠科研通 4225854
什么是DOI,文献DOI怎么找? 2318003
邀请新用户注册赠送积分活动 1316553
关于科研通互助平台的介绍 1266248