An efficient hybrid system for anomaly detection in social networks

计算机科学 支持向量机 异常检测 误传 社会化媒体 机器学习 数据挖掘 鉴定(生物学) 决策树 人工智能 社交网络(社会语言学) 分类器(UML) 朴素贝叶斯分类器 计算机安全 万维网 生物 植物
作者
Shafiur Rahman,Sajal Halder,Ashraf Uddin,Uzzal Kumar Acharjee
出处
期刊:Cybersecurity [Springer Nature]
卷期号:4 (1) 被引量:7
标识
DOI:10.1186/s42400-021-00074-w
摘要

Abstract Anomaly detection has been an essential and dynamic research area in the data mining. A wide range of applications including different social medias have adopted different state-of-the-art methods to identify anomaly for ensuring user’s security and privacy. The social network refers to a forum used by different groups of people to express their thoughts, communicate with each other, and share the content needed. This social networks also facilitate abnormal activities, spread fake news, rumours, misinformation, unsolicited messages, and propaganda post malicious links. Therefore, detection of abnormalities is one of the important data analysis activities for the identification of normal or abnormal users on the social networks. In this paper, we have developed a hybrid anomaly detection method named DT-SVMNB that cascades several machine learning algorithms including decision tree (C5.0), Support Vector Machine (SVM) and Naïve Bayesian classifier (NBC) for classifying normal and abnormal users in social networks. We have extracted a list of unique features derived from users’ profile and contents. Using two kinds of dataset with the selected features, the proposed machine learning model called DT-SVMNB is trained. Our model classifies users as depressed one or suicidal one in the social network. We have conducted an experiment of our model using synthetic and real datasets from social network. The performance analysis demonstrates around 98% accuracy which proves the effectiveness and efficiency of our proposed system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz完成签到,获得积分10
1秒前
小蘑菇应助不才采纳,获得10
2秒前
2秒前
英勇凝旋发布了新的文献求助10
2秒前
2秒前
干净寄翠发布了新的文献求助10
4秒前
samara发布了新的文献求助10
4秒前
温柔樱桃应助Vivian采纳,获得10
4秒前
4秒前
朱先生完成签到 ,获得积分10
5秒前
thangxtz完成签到,获得积分10
5秒前
大葡萄发布了新的文献求助10
5秒前
帕丁顿发布了新的文献求助20
5秒前
欣喜乐儿完成签到,获得积分10
6秒前
树林红了完成签到,获得积分10
6秒前
ttle完成签到,获得积分10
7秒前
meizi0109完成签到 ,获得积分10
7秒前
自由毒娘完成签到,获得积分10
7秒前
任性铅笔完成签到,获得积分10
7秒前
圣尊鳕幽发布了新的文献求助10
7秒前
suusu发布了新的文献求助10
7秒前
SYLH应助曾经的念桃采纳,获得10
7秒前
7秒前
9秒前
pencil123完成签到,获得积分10
9秒前
科研助手6应助学术草履虫采纳,获得10
9秒前
10秒前
ccCherub完成签到,获得积分10
10秒前
xia完成签到,获得积分10
10秒前
思源应助田翰林采纳,获得20
10秒前
猪猪hero应助琉琉硫采纳,获得10
10秒前
tjzbw完成签到,获得积分10
11秒前
11秒前
samara完成签到,获得积分10
11秒前
小童老婆完成签到,获得积分10
11秒前
大葡萄完成签到,获得积分10
12秒前
12秒前
WQ发布了新的文献求助10
12秒前
橙子完成签到,获得积分10
13秒前
共享精神应助朱gui采纳,获得10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812073
求助须知:如何正确求助?哪些是违规求助? 3356517
关于积分的说明 10382273
捐赠科研通 3073630
什么是DOI,文献DOI怎么找? 1688345
邀请新用户注册赠送积分活动 812103
科研通“疑难数据库(出版商)”最低求助积分说明 766947