计算机科学
支持向量机
异常检测
误传
社会化媒体
机器学习
数据挖掘
鉴定(生物学)
决策树
人工智能
社交网络(社会语言学)
分类器(UML)
朴素贝叶斯分类器
计算机安全
万维网
生物
植物
作者
Shafiur Rahman,Sajal Halder,Ashraf Uddin,Uzzal Kumar Acharjee
出处
期刊:Cybersecurity
[Springer Nature]
日期:2021-12-01
卷期号:4 (1)
被引量:7
标识
DOI:10.1186/s42400-021-00074-w
摘要
Abstract Anomaly detection has been an essential and dynamic research area in the data mining. A wide range of applications including different social medias have adopted different state-of-the-art methods to identify anomaly for ensuring user’s security and privacy. The social network refers to a forum used by different groups of people to express their thoughts, communicate with each other, and share the content needed. This social networks also facilitate abnormal activities, spread fake news, rumours, misinformation, unsolicited messages, and propaganda post malicious links. Therefore, detection of abnormalities is one of the important data analysis activities for the identification of normal or abnormal users on the social networks. In this paper, we have developed a hybrid anomaly detection method named DT-SVMNB that cascades several machine learning algorithms including decision tree (C5.0), Support Vector Machine (SVM) and Naïve Bayesian classifier (NBC) for classifying normal and abnormal users in social networks. We have extracted a list of unique features derived from users’ profile and contents. Using two kinds of dataset with the selected features, the proposed machine learning model called DT-SVMNB is trained. Our model classifies users as depressed one or suicidal one in the social network. We have conducted an experiment of our model using synthetic and real datasets from social network. The performance analysis demonstrates around 98% accuracy which proves the effectiveness and efficiency of our proposed system.
科研通智能强力驱动
Strongly Powered by AbleSci AI