溶解度
纺纱
材料科学
基质(化学分析)
醋酸
制作
原材料
再现性
化学工程
纳米技术
生物医学工程
色谱法
复合材料
化学
生物化学
有机化学
医学
工程类
病理
替代医学
作者
Dimitrios I. Zeugolis,B. Li,Ricky R. Lareu,Casey K. Chan,Michael Raghunath
标识
DOI:10.1163/156856208786052344
摘要
Collagen is the main component of the extra-cellular matrix and has been utilised for numerous clinical applications in many forms and products. However, since collagen remains a natural animal-derived biopolymer, variation between batches should be addressed and minimised to ensure reproducibility of the fabrication process. Recently, electro-spinning of collagen has been introduced as a leading technique for the production of bio-mimetic nano-scale scaffolds for tissue-engineering applications. However, no protocols are available that would allow comparisons of the quality of different collagen raw materials prior to the electro-spinning process. In order to bridge this gap we assessed the solubility of various freeze-dried collagens in 0.5 M acetic acid and analysed the solved collagen by gel electrophoresis. We show that raw material of limited solubility in acetic acid will not render high quality electro-spun nano-fibres using hexafluoropropanol. In particular, insoluble collagen directly failed to produce nano-fibres, collagen of reduced solubility produced fused nano-fibres with limited inter-nano-fibre space, whilst purified type-I collagen of high solubility produced smooth, reproducible nano-fibres. Gel electrophoresis confirmed the amount of solubility, as well as qualitative differences in terms of collagen cross-links and collagen types. We recommend this simple and fast step to save costs and to enhance control over the electro-spinning process of collagen. Furthermore, we believe that the solubility test should be introduced prior to any collagenous matrix preparation in order to ensure reproducibility and accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI