Simulation of regional groundwater levels in arid regions using interpretable machine learning models

地下水 环境科学 水文学(农业) 干旱 地下水流 水资源 流域 生态水文学 水流 频道(广播) 生态系统 含水层 地质学 地理 计算机科学 生态学 岩土工程 生物 古生物学 地图学 计算机网络
作者
Qi Liu,Dongwei GUI,Lei Zhang,Jie Niu,Heng Dai,Guanghui Wei,Bill X. Hu
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:831: 154902-154902 被引量:59
标识
DOI:10.1016/j.scitotenv.2022.154902
摘要

Regional groundwater level forecasting is critical to water resource management, especially for arid regions which require effective management of groundwater resources to meet human and ecosystem needs. In this study Machine Learning and Deep Learning approaches - Support Vector Machine, Generalized Regression Neural Network, Decision Tree, Random Forest (RF), Convolutional Neural Network, Long Short Term Memory and Gated Recurrent Network- have been used to simulate the groundwater levels in the lower Tarim River basin (LTRB) which is an extreme dryland. The results showed that models developed here with easily available input data such as relative humidity, flow volume and distance to the riverbank can fully utilize spatiotemporally inconsistent groundwater monitoring data to predict the spatiotemporal variation of the groundwater system in arid regions where exist intermittent flow. The shapely additive explanations method was used to interpret the RF model and discover the effect of meteorological, hydrological and environmental variables on the regional groundwater. These explanations showed that the flow volume, the distance to the river channel and reservoir have a critical impact on groundwater changes. Within 300 m distance to the riverbank, groundwater would mainly be influenced by the flow volume and the distance to the reservoir. While far from the riverbank, these effects decreased gradually further away from the river course. The RF prediction results showed that in the next three years (2021-2023), the groundwater level on average may decline to -6.4 m, and the suitable areas for natural vegetation growth would be limited to 39% if no water conveyance in the LTRB. To guarantee the stability of ecosystems in the LTRB, it is necessary to convey the water annually. These results can support spatiotemporal predictions of groundwater levels predominantly recharged by intermittent flow, and form a scientific basis for sustainable water resources management in arid regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
小梦完成签到,获得积分10
1秒前
2秒前
3秒前
4秒前
小蘑菇应助redbunny采纳,获得10
4秒前
6秒前
6秒前
7秒前
8秒前
jojo完成签到 ,获得积分10
8秒前
青橘短衫完成签到,获得积分10
9秒前
9秒前
9秒前
鸡丝肉酱子完成签到,获得积分10
10秒前
酷炫甜瓜完成签到,获得积分10
10秒前
chunyu发布了新的文献求助10
12秒前
Tzzl0226发布了新的文献求助10
12秒前
情怀应助阳光的雁玉采纳,获得10
12秒前
zilhua完成签到,获得积分10
13秒前
马库拉格发布了新的文献求助10
14秒前
14秒前
科研通AI5应助博修采纳,获得10
17秒前
clxgene完成签到,获得积分10
17秒前
18秒前
20秒前
b15966013195完成签到,获得积分10
20秒前
clxgene发布了新的文献求助10
22秒前
summitekey完成签到 ,获得积分10
23秒前
蕃薯叶给酸奶烤着吃的求助进行了留言
23秒前
23秒前
77发布了新的文献求助10
23秒前
爱笑的眼睛完成签到,获得积分10
24秒前
dongqing12311完成签到,获得积分10
25秒前
太吾墨完成签到,获得积分10
27秒前
一不留神完成签到,获得积分10
27秒前
28秒前
阿兰完成签到 ,获得积分10
29秒前
30秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812639
求助须知:如何正确求助?哪些是违规求助? 3357159
关于积分的说明 10385273
捐赠科研通 3074338
什么是DOI,文献DOI怎么找? 1688722
邀请新用户注册赠送积分活动 812320
科研通“疑难数据库(出版商)”最低求助积分说明 766986