Superficial white matter analysis: An efficient point-cloud-based deep learning framework with supervised contrastive learning for consistent tractography parcellation across populations and dMRI acquisitions

纤维束成像 人工智能 磁共振弥散成像 判别式 白质 计算机科学 点云 深度学习 模式识别(心理学) 机器学习 磁共振成像 放射科 医学
作者
Tengfei Xue,Chaoyi Zhang,Chaoyi Zhang,Yuqian Chen,Yang Song,Alexandra J. Golby,Nikos Makris,Yogesh Rathi,Weidong Cai,Lauren J. O’Donnell
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:85: 102759-102759 被引量:18
标识
DOI:10.1016/j.media.2023.102759
摘要

Diffusion MRI tractography is an advanced imaging technique that enables in vivo mapping of the brain's white matter connections. White matter parcellation classifies tractography streamlines into clusters or anatomically meaningful tracts. It enables quantification and visualization of whole-brain tractography. Currently, most parcellation methods focus on the deep white matter (DWM), whereas fewer methods address the superficial white matter (SWM) due to its complexity. We propose a novel two-stage deep-learning-based framework, Superficial White Matter Analysis (SupWMA), that performs an efficient and consistent parcellation of 198 SWM clusters from whole-brain tractography. A point-cloud-based network is adapted to our SWM parcellation task, and supervised contrastive learning enables more discriminative representations between plausible streamlines and outliers for SWM. We train our model on a large-scale tractography dataset including streamline samples from labeled long- and medium-range (over 40 mm) SWM clusters and anatomically implausible streamline samples, and we perform testing on six independently acquired datasets of different ages and health conditions (including neonates and patients with space-occupying brain tumors). Compared to several state-of-the-art methods, SupWMA obtains highly consistent and accurate SWM parcellation results on all datasets, showing good generalization across the lifespan in health and disease. In addition, the computational speed of SupWMA is much faster than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
自然白安完成签到 ,获得积分10
3秒前
momo完成签到,获得积分10
3秒前
jessie发布了新的文献求助10
4秒前
博修发布了新的文献求助10
4秒前
可可西里完成签到 ,获得积分10
5秒前
王术完成签到,获得积分10
6秒前
星辰大海应助开放磬采纳,获得10
6秒前
XC完成签到,获得积分10
7秒前
齐桉完成签到 ,获得积分10
8秒前
爱科研的小孙孙完成签到,获得积分10
8秒前
8秒前
重要青柏完成签到,获得积分10
9秒前
10秒前
12秒前
14秒前
15秒前
xinyue完成签到 ,获得积分10
16秒前
guozizi发布了新的文献求助10
16秒前
sherry完成签到 ,获得积分10
17秒前
bkagyin应助黄蛋黄采纳,获得10
17秒前
魔幻傲霜完成签到,获得积分10
18秒前
20秒前
李爱国应助edtaa采纳,获得10
21秒前
23秒前
24秒前
情怀应助edtaa采纳,获得10
25秒前
29秒前
MOON发布了新的文献求助10
29秒前
lijianguo发布了新的文献求助30
29秒前
屠建锋发布了新的文献求助10
30秒前
30秒前
充电宝应助cometx采纳,获得10
31秒前
悲凉的秋荷完成签到,获得积分10
32秒前
墨墨完成签到,获得积分10
33秒前
科研通AI5应助yy采纳,获得10
33秒前
34秒前
35秒前
懦弱的难摧完成签到,获得积分10
35秒前
花花完成签到 ,获得积分10
36秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812639
求助须知:如何正确求助?哪些是违规求助? 3357159
关于积分的说明 10385273
捐赠科研通 3074338
什么是DOI,文献DOI怎么找? 1688722
邀请新用户注册赠送积分活动 812320
科研通“疑难数据库(出版商)”最低求助积分说明 766986