亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning for Predicting Colon Cancer Recurrence

医学 机器学习 结直肠癌 接收机工作特性 人工智能 模式 内科学 肿瘤科 癌症 计算机科学 社会科学 社会学
作者
Erkan Kayıkçıoğlu,Arif Hakan Önder,Burcu Bacak,T. Ahmet Serel
出处
期刊:Surgical Oncology-oxford [Elsevier BV]
卷期号:54: 102079-102079 被引量:1
标识
DOI:10.1016/j.suronc.2024.102079
摘要

Colorectal cancer (CRC) is a global public health concern, ranking among the most commonly diagnosed malignancies worldwide. Despite advancements in treatment modalities, the specter of CRC recurrence remains a significant challenge, demanding innovative solutions for early detection and intervention. The integration of machine learning into oncology offers a promising avenue to address this issue, providing data-driven insights and personalized care. This retrospective study analyzed data from 396 patients who underwent surgical procedures for colon cancer (CC) between 2010 and 2021. Machine learning algorithms were employed to predict CC recurrence, with a focus on demographic, clinicopathological, and laboratory characteristics. A range of evaluation metrics, including AUC (Area Under the Receiver Operating Characteristic), accuracy, recall, precision, and F1 scores, assessed the performance of machine learning algorithms. Significant risk factors for CC recurrence were identified, including sex, carcinoembryonic antigen (CEA) levels, tumor location, depth, lymphatic and venous invasion, and lymph node involvement. The CatBoost Classifier demonstrated exceptional performance, achieving an AUC of 0.92 and an accuracy of 88% on the test dataset. Feature importance analysis highlighted the significance of CEA levels, albumin levels, N stage, weight, platelet count, height, neutrophil count, lymphocyte count, and gender in determining recurrence risk. The integration of machine learning into healthcare, exemplified by this study's findings, offers a pathway to personalized patient risk stratification and enhanced clinical decision-making. Early identification of individuals at risk of CC recurrence holds the potential for more effective therapeutic interventions and improved patient outcomes. Machine learning has the potential to revolutionize our approach to CC recurrence prediction, emphasizing the synergy between medical expertise and cutting-edge technology in the fight against cancer. This study represents a vital step toward precision medicine in CC management, showcasing the transformative power of data-driven insights in oncology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肥鲸鱼完成签到,获得积分20
16秒前
SciGPT应助科研通管家采纳,获得10
22秒前
酷波er应助Rooon采纳,获得10
38秒前
41秒前
提米橘发布了新的文献求助20
42秒前
CodeCraft应助科研小白采纳,获得20
50秒前
淡淡的航空完成签到 ,获得积分10
59秒前
Fischl完成签到 ,获得积分10
1分钟前
1分钟前
Rooon发布了新的文献求助10
1分钟前
1分钟前
负责的蘑菇完成签到 ,获得积分10
1分钟前
IfItheonlyone完成签到 ,获得积分10
1分钟前
刀客特幽发布了新的文献求助10
1分钟前
哈基米德应助负责的蘑菇采纳,获得20
1分钟前
Tushar完成签到,获得积分10
1分钟前
NexusExplorer应助小柠檬采纳,获得10
1分钟前
搜集达人应助Rooon采纳,获得10
1分钟前
1分钟前
乒乒乓乓完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
顺利紫山发布了新的文献求助10
1分钟前
小柠檬发布了新的文献求助10
1分钟前
eazin完成签到 ,获得积分10
1分钟前
杨桃完成签到,获得积分10
2分钟前
2分钟前
彭于晏应助顺利紫山采纳,获得10
2分钟前
NexusExplorer应助小柠檬采纳,获得10
2分钟前
Rooon发布了新的文献求助10
2分钟前
李健的小迷弟应助蒋飞雪采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
CodeCraft应助毛仔采纳,获得20
2分钟前
orixero应助乐事薯片噢采纳,获得10
2分钟前
2分钟前
2分钟前
尊敬的凝丹完成签到 ,获得积分10
2分钟前
传奇3应助榛子采纳,获得10
2分钟前
勤奋的热狗完成签到 ,获得积分10
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4042741
求助须知:如何正确求助?哪些是违规求助? 3580489
关于积分的说明 11383426
捐赠科研通 3308526
什么是DOI,文献DOI怎么找? 1820647
邀请新用户注册赠送积分活动 893435
科研通“疑难数据库(出版商)”最低求助积分说明 815615