Efficient Electrocardiogram-based Arrhythmia Detection Utilizing R-peaks and Machine Learning

希尔伯特-黄变换 人工智能 心律失常 计算机科学 机器学习 滤波器(信号处理) 信号处理 深度学习 F1得分 二元分类 模式识别(心理学) 算法 支持向量机 心房颤动 数字信号处理 心脏病学 医学 计算机硬件 计算机视觉
作者
Pham Văn Thinh,Van-Su Pham,M.T. Nguyen,Hai-Chau Le
标识
DOI:10.1109/icsse58758.2023.10227145
摘要

The rise in heart-related diseases has led to a need for proper automatic diagnosis methods to identify irregular heart problems. It has proven to be challenging to promptly and accurately diagnose many complicated and interferential symptom diseases including arrhythmia. Recently, thanks to the evolution of artificial intelligence (AI) and the advance in signal processing, automated arrhythmia detection has become easier and widely applied for physicians and practitioners with machine learning (ML) techniques and the only use of electrocardiograms (ECG). In this paper, we propose an ECG-based machine learning arrhythmia detection approach that exploits R-peak detection and machine learning. Our proposed solution targeting a binary classification of heartbeats employs an efficient R-peak detection that uses a Butterworth bypass filter, Ensemble Empirical Mode Decomposition (EEMD), and Hilbert Transforms (HT) for processing ECG signals, and applies the most effective machine learning algorithm among typical ML algorithms to improve the performance of the arrhythmia diagnosis. In order to select the most suitable one with the highest achievable performance, typical ML algorithms such as BG, BS, KNN, and RF were investigated. A popular public dataset, MIT-BIH Arrhythmia, is used for the numerical experiments. The attained results prove that our developed solution outperforms the notable traditional algorithms and it offers the best performance with an accuracy of 93.4%, a sensitivity of 95.4%, and an F1-score of 96.3%. The high obtained F1-score implies that our solution can overcome the data imbalance to detect arrhythmia correctly and be effective in practical clinical environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助土豆土豆采纳,获得10
刚刚
2023204306324发布了新的文献求助10
1秒前
小玉米发布了新的文献求助10
2秒前
GG完成签到 ,获得积分10
3秒前
xxxqqq完成签到,获得积分10
4秒前
6秒前
7秒前
shilong.yang完成签到,获得积分10
7秒前
清颜完成签到 ,获得积分10
8秒前
9秒前
风中小鸽子完成签到,获得积分10
9秒前
犹豫的若发布了新的文献求助10
9秒前
xixi890430发布了新的文献求助50
9秒前
糊涂的雁易应助干饭采纳,获得10
9秒前
9秒前
shilong.yang发布了新的文献求助10
10秒前
10秒前
清爽的恋风完成签到,获得积分10
10秒前
11秒前
11秒前
桐桐应助izumi采纳,获得10
11秒前
gxh发布了新的文献求助10
12秒前
UpUp发布了新的文献求助10
12秒前
ikun完成签到,获得积分10
13秒前
GG关注了科研通微信公众号
13秒前
李健的小迷弟应助wegrvfd采纳,获得10
14秒前
坚强的紫菜完成签到 ,获得积分10
14秒前
烟花应助科研宝采纳,获得10
14秒前
研友_Z7O2MZ发布了新的文献求助10
15秒前
15秒前
15秒前
十言发布了新的文献求助20
17秒前
科研通AI5应助盛乾衣采纳,获得10
17秒前
立军发布了新的文献求助10
17秒前
Jasper应助超级的天思采纳,获得10
19秒前
Lindsay完成签到,获得积分10
19秒前
传奇3应助罗斯ROSE采纳,获得30
20秒前
彩色的荔枝完成签到 ,获得积分10
22秒前
科研通AI5应助萌神_HUGO采纳,获得150
22秒前
22秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812456
求助须知:如何正确求助?哪些是违规求助? 3356978
关于积分的说明 10384629
捐赠科研通 3074104
什么是DOI,文献DOI怎么找? 1688616
邀请新用户注册赠送积分活动 812247
科研通“疑难数据库(出版商)”最低求助积分说明 766960