数学
基质(化学分析)
迭代法
乘法(音乐)
秩(图论)
应用数学
矩阵分裂
分块矩阵
矩阵乘法
投影(关系代数)
低秩近似
对称矩阵
方阵
算法
数学分析
组合数学
特征向量
物理
量子
量子力学
复合材料
汉克尔矩阵
材料科学
作者
Lili Xing,Wendi Bao,Weiguo Li
出处
期刊:Cornell University - arXiv
日期:2023-05-26
标识
DOI:10.48550/arxiv.2305.16684
摘要
In this paper, several row and column orthogonal projection methods are proposed for solving matrix equation $AXB=C$, where the matrix $A$ and $B$ are full rank or rank deficient and equation is consistent or not. These methods are iterative methods without matrix multiplication. It is theoretically proved these methods converge to the solution or least-squares solution of the matrix equation. Numerical results show that these methods are more efficient than iterative methods involving matrix multiplication for high-dimensional matrix.
科研通智能强力驱动
Strongly Powered by AbleSci AI