已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A two-channel end-to-end network based on dynamic corpus of knowledge graph for intelligent recognition of Traditional Chinese Medicine terminology

术语 计算机科学 人工智能 自然语言处理 可读性 领域(数学) 发音 分类器(UML) 统一医学语言系统 语言学 数学 哲学 程序设计语言 纯数学
作者
yulu Wu,Kun Wang,Xiufeng Liu
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3712568/v1
摘要

Abstract The accurate analysis of Traditional Chinese Medicine (TCM) terminology is a research hotspot in the field of TCM, as it can provide a convenient way of information exchange between TCM and patients, thus achieving accurate diagnosis and treatment. TCM terminology includes two forms: speech and text. Currently, the methods used for TCM terminology recognition often adopt deep learning models. However, the existing deep learning methods are hindered by insufficient corpus and defects of the end-to-end learning framework, which leads to the low accuracy of TCM terminology recognition. To solve the above problems, this paper first combines the information of text and picture of TCM terminology and proposes an extended model of TCM terminology corpus. Joint optimization of text and picture-based knowledge graph TCM terminology corpus expansion model is incorporated, and the traditional corpus is supplemented by incrementally constructing a dynamic TCM terminology corpus. Secondly, the text-speech end-to-end conversion mechanism is used to realize the synchronous incremental expansion of the TCM dynamic speech corpus. After that, the TCM dynamic speech corpus is deeply trained through a unified streaming and non-streaming two-pass end-to-end model, to realize the accurate recognition of the speech of TCM terminology. Due to the language habits of TCM experts, there are many redundant words in TCM pronunciation, which greatly reduces the readability of the text of TCM terminology. In this paper, we proposed a directed acyclic graph-(DAG) and dynamic programming-(DP) based redundant word detection framework to screen redundant words and realize the accurate identification of TCM terminology. The results show that the accuracy of the speech recognition algorithm proposed in this paper for the speech of TCM terminology is increased by 12.92%, 11.18%, and 19.95% compared with three public speech recognition engines of Iflytek, Aliyun, and Baidu, respectively. As an incremental contribution, this paper optimizes the redundant words based on speech recognition, which greatly improves the ability to conformant TCM terminology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏葳蕤完成签到,获得积分10
2秒前
姜鱼肉完成签到,获得积分10
10秒前
可爱的函函应助yln采纳,获得10
14秒前
姜鱼肉发布了新的文献求助10
14秒前
蛋挞好好吃完成签到,获得积分10
15秒前
HtheJ完成签到,获得积分10
16秒前
17秒前
18秒前
呼啦呼啦完成签到 ,获得积分10
20秒前
干饭人发布了新的文献求助10
22秒前
CipherSage应助李大壮采纳,获得20
23秒前
巴巴塔发布了新的文献求助10
23秒前
24秒前
klandcy完成签到,获得积分10
26秒前
26秒前
wenhaw完成签到 ,获得积分10
26秒前
光亮静槐完成签到 ,获得积分10
28秒前
Wei发布了新的文献求助200
29秒前
飞天土豆发布了新的文献求助10
29秒前
HYQ完成签到 ,获得积分10
30秒前
与山完成签到,获得积分10
34秒前
与山发布了新的文献求助10
37秒前
38秒前
我是老大应助飞天土豆采纳,获得10
39秒前
40秒前
符符发布了新的文献求助10
43秒前
菜菜博士发布了新的文献求助10
44秒前
李大壮发布了新的文献求助20
45秒前
汪海洋完成签到 ,获得积分10
48秒前
48秒前
SHAO完成签到,获得积分0
51秒前
有点抽风完成签到,获得积分10
53秒前
善学以致用应助菜菜博士采纳,获得10
53秒前
55秒前
58秒前
1分钟前
菜菜博士完成签到,获得积分10
1分钟前
tongluobing发布了新的文献求助10
1分钟前
1分钟前
天天快乐应助活泼的磬采纳,获得10
1分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4047683
求助须知:如何正确求助?哪些是违规求助? 3585514
关于积分的说明 11395087
捐赠科研通 3312610
什么是DOI,文献DOI怎么找? 1822647
邀请新用户注册赠送积分活动 894576
科研通“疑难数据库(出版商)”最低求助积分说明 816406