Improving the quality of hires via the use of machine learning and an expansion of the person–environment fit theory

质量(理念) 心理学 计算机科学 过程管理 认知心理学 业务 认识论 哲学
作者
Melike Artar,Yavuz Selim Balcıoğlu,Oya Erdil
出处
期刊:Management Decision [Emerald Publishing Limited]
被引量:7
标识
DOI:10.1108/md-12-2023-2295
摘要

Purpose Our proposed machine learning model contributes to improving the quality of Hire by providing a more nuanced and comprehensive analysis of candidate attributes. Instead of focusing solely on obvious factors, such as qualifications and experience, our model also considers various dimensions of fit, including person-job fit and person-organization fit. By integrating these dimensions of fit into the model, we can better predict a candidate’s potential contribution to the organization, hence enhancing the Quality of Hire. Design/methodology/approach Within the scope of the investigation, the competencies of the personnel working in the IT department of one in the largest state banks of the country were used. The entire data collection includes information on 1,850 individual employees as well as 13 different characteristics. For analysis, Python’s “keras” and “seaborn” modules were used. The Gower coefficient was used to determine the distance between different records. Findings The K-NN method resulted in the formation of five clusters, represented as a scatter plot. The axis illustrates the cohesion that exists between things (employees) that are similar to one another and the separateness that exists between things that have their own individual identities. This shows that the clustering process is effective in improving both the degree of similarity within each cluster and the degree of dissimilarity between clusters. Research limitations/implications Employee competencies were evaluated within the scope of the investigation. Additionally, other criteria requested from the employee were not included in the application. Originality/value This study will be beneficial for academics, professionals, and researchers in their attempts to overcome the ongoing obstacles and challenges related to the securing the proper talent for an organization. In addition to creating a mechanism to use big data in the form of structured and unstructured data from multiple sources and deriving insights using ML algorithms, it contributes to the debates on the quality of hire in an entire organization. This is done in addition to developing a mechanism for using big data in the form of structured and unstructured data from multiple sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LLL完成签到,获得积分20
1秒前
jackten发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
5秒前
ivy发布了新的文献求助10
5秒前
ghostpants完成签到,获得积分10
6秒前
桃子发布了新的文献求助10
7秒前
7秒前
黄臻完成签到,获得积分10
7秒前
赘婿应助王jyk采纳,获得10
8秒前
8秒前
guojingjing发布了新的文献求助10
8秒前
Yun yun发布了新的文献求助10
9秒前
香蕉觅云应助DeepLearning采纳,获得30
9秒前
11秒前
123关闭了123文献求助
14秒前
17秒前
19秒前
田様应助朱安南采纳,获得10
19秒前
乌拉拉发布了新的文献求助10
19秒前
万能图书馆应助Lee采纳,获得10
19秒前
所所应助Yun yun采纳,获得10
19秒前
俊逸依丝完成签到,获得积分20
20秒前
21秒前
大模型应助abc夏冰冰采纳,获得10
22秒前
23秒前
orixero应助zbc采纳,获得10
24秒前
Lucas应助K0h采纳,获得10
25秒前
25秒前
丘比特应助英吉利25采纳,获得10
26秒前
科研通AI5应助pliliyi采纳,获得50
27秒前
27秒前
28秒前
黄臻发布了新的文献求助10
28秒前
Leemyaaa完成签到 ,获得积分10
29秒前
JPH1990发布了新的文献求助10
31秒前
31秒前
今后应助钙离子采纳,获得10
33秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208823
求助须知:如何正确求助?哪些是违规求助? 4386109
关于积分的说明 13660182
捐赠科研通 4245203
什么是DOI,文献DOI怎么找? 2329161
邀请新用户注册赠送积分活动 1326969
关于科研通互助平台的介绍 1279265